Skip to main content

Advertisement

Log in

AMP hydrolysis reduction in blood plasma of breast cancer elderly patients after different treatments

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Adenine nucleotides are important signaling molecules that mediate biological functions in many conditions, including cancer. The enzymes CD39 and CD73 produce adenosine in the extracellular milieu that has a very important role in tumor development. This study aimed to evaluate nucleotide hydrolysis in the plasma blood of breast cancer elderly patients. In this prospective cohort study, we investigated the ectonucleotidases activity in breast cancer elderly patients, at the moment of diagnosis and after treatment. Control group consisted of elderly women without cancer diagnostic. The nucleotide hydrolysis assay was performed by the malachite green method and used ATP, ADP, or AMP as substrates. Paired t test or Wilcoxon rank-sum test was used. Our data showed that breast cancer patients presented high levels of ATP and AMP hydrolyses when compared to control group at the moment of diagnosis. When analyzing the differences between the samples at the time of diagnostic and 6 months after treatment, we observed a significant reduction on CD73 activity after all treatments used: surgery, chemotherapy, radiotherapy, or hormone therapy. The results with APCP, a specific CD73 inhibitor, showed that the AMP hydrolysis was inhibited in all conditions evaluated. We observed a diminished ADPase activity in the patients without metastasis when compared to metastatic breast cancer patients. The results showed that AMP hydrolysis was reduced in the blood plasma of breast cancer elderly patients after different treatments. This study strengthens the potential role of CD73 enzyme as a biomarker for breast cancer treatment response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Coordenação de Prevenção e Vigilância do Instituto Nacional do Câncer José Alencar Gomes da Silva (2020) Estimativa 2020: incidência de câncer no Brasil. INCA, Rio de Janeiro

  2. Wild CP, Weiderpass E, Stewart BW (2020) World cancer report: cancer research for cancer prevention. Weiderpass, World cancer report 2020. Description: Lyon: International Agency for Research on Cancer, 2020

  3. De Souza Timoteo AR, Gonçalves AÉMM, Sales LAP, Albuquerque BM, Souza JES, Moura PCP, Aquino MAA, Agnez-Lima LF, Lajus TBP (2018) A portrait of germline mutation in Brazilian at-risk for hereditary breast cancer. Breast Cancer Res Treat 172(3):637–646. https://doi.org/10.1007/s10549-018-4938-0

    Article  CAS  PubMed  Google Scholar 

  4. Saraiva DP, Cabral MG, Jacinto A, Braga S (2017) How many diseases is triple negative breast cancer: the protagonism of the immune microenvironment. ESMO Open 2(4):e000208. https://doi.org/10.1136/esmoopen-2017-000208

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tesarova P (2016) Specific aspects of breast cancer therapy of elderly women. Biomed Res Int 2016:1381695. https://doi.org/10.1155/2016/1381695

    Article  PubMed  PubMed Central  Google Scholar 

  6. Akram M, Iqbal M, Daniyal M, Khan AU (2017) Awareness and current knowledge of breast cancer. Biol Res 50:33. https://doi.org/10.1186/s40659-017-0140-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Biganzoli L, Wildiers H, Oakman C, Marotti L, Loibl S, Kunkler I, Reed M, Ciatto S, Voogd AC, Brain E, Cutuli B, Terret C, Gosney M, Aapro M, Audisio R (2012) Management of elderly patients with breast cancer: updated recommendations of the International society of geriatric oncology (SIOG) and European society of breast cancer specialists (EUSOMA). Lancet Oncol 13:e148–e160. https://doi.org/10.1016/S1470-2045(11)70383-7

    Article  PubMed  Google Scholar 

  8. International Breast Cancer Study Group, Rudenstam CM, Zahrieh D, Forbes JF, Crivellari D, Holmberg SB, Rey P, Dent D, Campbell I, Bernhard J, Price KN, Castiglione-Gertsch M, Goldhirsch A, Gelber RD, Coates AS (2006) Randomized trial comparing axillary clearance versus no axillary clearance in older patients with breast cancer: first results of International breast cancer study group trial 10–93. J Clin Oncol 24(3):337–344. https://doi.org/10.1200/JCO.2005.01.5784

    Article  Google Scholar 

  9. Roder D, Farshid G, Kollias J, Koczwara B, Karapetis C, Adams J, Joshi R, Keefe D, Miller C, Powell K, Fusco K, Eckert M, Buckley E, Beckmann K, Price T (2017) Female breast cancer management and survival: the experience of major public hospitals in South Australia over 3 decades—trends by age and in the elderly. J Eval Clin Pract 23(6):1433–1443. https://doi.org/10.1111/jep.12819

    Article  PubMed  Google Scholar 

  10. Bouchardy C, Rapiti E, Blagojevic S, Vlastos AT, Vlastos G (2007) Older female cancer patients: importance, causes, and consequences of undertreatment. J Clin Oncol 25:1858–1869. https://doi.org/10.1200/JCO.2006.10.4208

    Article  Google Scholar 

  11. Yu J, Liao X, Li L et al (2017) A preliminary study of the role of extracellular -5′- nucleotidase in breast cancer stem cells and epithelial-mesenchymal transition. In Vitro Cell Dev Biol -Animal 53:132. https://doi.org/10.1007/s11626-016-0089-y

    Article  CAS  Google Scholar 

  12. Van de Water W, Markopoulos C, van de Velde CJH, Seynaeve C, Hasenburg A, Rea D, Putter H, Nortier JWR, de Craen AJM, Hille ETM, Bastiaannet E, Hadji P, Westendorp RGJ, Liefers G, Jones SE (2012) Association between age at diagnosis and disease-specific mortality among postmenopausal women with hormone receptor-positive breast cancer. JAMA 307:590–597. https://doi.org/10.1001/jama.2012.84

    Article  PubMed  Google Scholar 

  13. Burnstock G (2017) Purinergic signalling: therapeutic developments. Front Pharmacol 8:661. https://doi.org/10.3389/fphar.2017.00661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferrari D, Malavasi F, Antonioli L (2017) A purinergic trail for metastases. Trends Pharmacol Sci 38(3):277–290. https://doi.org/10.1016/j.tips.2016.11.010

    Article  CAS  PubMed  Google Scholar 

  15. Zanin RF, da Silva GL, Erig T, Sperotto ND, Leite CE, Coutinho-Silva R, Batastini AM, Morrone FB (2015) Decrease of serum adenine nucleotide hydrolysis in an irritant contact dermatitis mice model: potential P2X7R involvement. Mol Cell Biochem 404(1–2):221–228. https://doi.org/10.1007/s11010-015-2381-7

    Article  CAS  PubMed  Google Scholar 

  16. Allard B, Longhi MS, Robson SC, Stagg J (2017) The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol Rev 276:121–144. https://doi.org/10.1111/imr.12528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Di Virgilio F, Sarti AC, Falzoni S, De Marchi E, Adinolfi E (2018) Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat Rev Cancer 18(10):601–618. https://doi.org/10.1038/s41568-018-0037-0

    Article  CAS  PubMed  Google Scholar 

  18. Cai XY, Ni XC, Yi Y, He HW, Wang JX, Fu YP, Sun J, Zhou J, Cheng YF, Jin JJ, Fan J, Qiu SJ (2016) Overexpression of CD39 in hepatocellular carcinoma is an independent indicator of poor outcome after radical resection. Kapritsou Med 95(40):e4989. https://doi.org/10.1097/MD.0000000000004989

    Article  CAS  Google Scholar 

  19. Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8(3):437–502. https://doi.org/10.1007/s11302-012-9309-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barginear MF, Muss H, Kimmick G, Owusu C, Mrozek E, Shahrokni A, Ballman K, Hurria A (2014) Breast cancer and aging: results of the U13 conference breast cancer panel. Breast Cancer Res Treat 146(1):1–6. https://doi.org/10.1007/s10549-014-2994-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Loi S, Pommey S, Haibe-Kains B, Beavis PA, Darcy PK, Smyth MJ, Stagg J (2013) CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc Natl Acad Sci U S A 110(27):11091–11096. https://doi.org/10.1073/pnas.1222251110

    Article  PubMed  PubMed Central  Google Scholar 

  22. Antonioli L, Yegutkin GG, Pacher P, Blandizzi C, Haskó G (2016) Anti-CD73 in cancer immunotherapy: awakening new opportunities. Trends Cancer 2(2):95–109. https://doi.org/10.1016/j.trecan.2016.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  23. Burnstock G, Di Virgilio F (2013) Purinergic signalling in cancer. Purinergic Signal 9:491–540. https://doi.org/10.1007/s11302-013-9372-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, Huang X, Caldwell S, Liu K, Smith P, Chen JF, Jackson EK, Apasov S, Abrams S, Sitkovsky M (2006) A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci U S A 103:13132–13137. https://doi.org/10.1073/pnas.0605251103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gardani CFF, Cappellari AR, Souza JB, Silva BT, Engroff P, Moritz CEJ, Scholl JN, Battastini AMO, Figueiró F, Morrone FB (2019) Hydrolysis of ATP, ADP and AMP are increased in blood plasma of prostate cancer patients. Purinergic Signal 15(1):95–105. https://doi.org/10.1007/s11302-018-9642-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dietrich F, Figueiró F, Filippi-Chiela EC, Cappellari AR, Rockenbach L, Tremblay A, Paula PB, Roesler R, Braga Filho A, Sévigny J, Morrone FB, Battastini AMO (2018) Ecto-5′-nucleotidase/CD73 contributes to the radiosensitivity of T24 human bladder cancer cell line. J Cancer Res Clin Oncol 144(3):469–482. https://doi.org/10.1007/s00432-017-2567-3

    Article  CAS  PubMed  Google Scholar 

  27. Santos AA Jr, Cappellari AR, de Marchi FO, Gehring MP, Zaparte A, Brandão CA, Lopes TG, da Silva VD, Pinto LFR, Savio LEB, Moreira-Souza ACA, Coutinho-Silva R, Paccez JD, Zerbini LF, Morrone FB (2017) Potential role of P2X7R in esophageal squamous cell carcinoma proliferation. Purinergic Signal 13(3):279–292. https://doi.org/10.1007/s11302-017-9559-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cappellari AR, Pillat MM, Souza HD, Dietrich F, Oliveira FH, Figueiró F, Abujamra AL, Roesler R, Lecka J, Sévigny J, Battastini AM, Ulrich H (2015) Ecto-5’-nucleotidase overexpression reduces tumor growth in a xenograph medulloblastoma model. PLoS ONE 10(10):e0140996. https://doi.org/10.1371/journal.pone.0140996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  30. Moritz CEJ, Teixeira BC, Rockenbach L, Reischak-Oliveira A, Casali A, Battastini AMO (2017) Altered extracellular ATP, ADP, and AMP hydrolysis in blood serum of sedentary individuals after an acute, aerobic, moderate exercise session. Mol Cell Biochem 426:55–63. https://doi.org/10.1007/s11010-016-2880-1

    Article  CAS  PubMed  Google Scholar 

  31. Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2-stimulated ATPase activity. Anal Biochem 157:375–380. https://doi.org/10.1016/0003-2697(86)90640-8

    Article  CAS  PubMed  Google Scholar 

  32. Gal O, Ishai Y, Sulkes A, Shochat T, Yerushalmi R (2018) Early breast cancer in the elderly: characteristics, therapy, and long-term outcome. Oncol 94(1):31–38. https://doi.org/10.1159/000480087

    Article  Google Scholar 

  33. Turner N, Zafarana E, Becheri D, Mottino G, Biganzoli L (2013) Breast cancer in the elderly: which lessons have we learned? Future Oncol 9(12):1871–1881. https://doi.org/10.2217/fon.13.140

    Article  CAS  PubMed  Google Scholar 

  34. do Carmo Araújo M, Rocha JB, Morsch A, Zanin R, Bauchspiess R, Morsch VM, Schetinger MR (2005) Enzymes that hydrolyze adenine nucleotides in platelets from breast cancer patients. Biochim Biophys Acta 1740(3):421–426. https://doi.org/10.1016/j.bbadis.2004.11.001

    Article  CAS  PubMed  Google Scholar 

  35. Moesta AK, Li X, Smyth MJ (2020) Targeting CD39 in cancer. Nat Rev Immunol 20(12):739–755. https://doi.org/10.1038/s41577-020-0376-4

    Article  CAS  PubMed  Google Scholar 

  36. Liu H, Zhang Y, Wu H, D’Alessandro A, Yegutkin GG, Song A et al (2016) Beneficial role of erythrocyte adenosine A2B receptor-mediated amp-activated protein kinase activation in high-altitude hypoxia. Circulation 134(5):405–421. https://doi.org/10.1161/CIRCULATIONAHA.116.021311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morello S, Capone M, Sorrentino C, Giannarelli D, Madonna G, Mallardo D, Grimaldi AM, Pinto A, Ascierto PE (2017) Soluble CD73 as biomarker in patients with metastatic melanoma patients treated with nivolumab. J Transl Med 15:244. https://doi.org/10.1186/s12967-017-1348-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Buisseret L, Pommey S, Allard B, Garaud S, Bergeron M, Cousineau I, Ameye L, Bareche Y, Paesmans M, Crown JPA, Di Leo A, Loi S, Piccart-Gebhart M, Willard-Gallo K, Sotiriou C, Stagg J (2018) Clinical significance of CD73 in triple-negative breast cancer: multiplex analysis of a phase III clinical trial. Ann Oncol 29(4):1056–1062. https://doi.org/10.1093/annonc/mdx730

    Article  CAS  PubMed  Google Scholar 

  39. Bastid J, Regairaz A, Bonnefoy N, Déjou C, Giustiniani J, Laheurte C, Cochaud S, Laprevotte E, Funck-Brentano E, Hemon P, Gros L, Bec N, Larroque C, Alberici G, Bensussan A, Eliaou JF (2015) Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity. Cancer Immunol Res 3(3):254–265. https://doi.org/10.1158/2326-6066.CIR-14-0018

    Article  CAS  PubMed  Google Scholar 

  40. Araújo MC, Rocha JB, Morsch A, Zanin R, Bauchspiess R, Morsch VM, Schetinger MR (2005) Enzymes that hydrolyze adenine nucleotides in platelets from breast cancer patients. Biochim Biophys Acta 1740(3):421–426. https://doi.org/10.1016/j.bbadis.2004.11.001

    Article  CAS  Google Scholar 

  41. Lafont V, Michaud HA, Bonnefoy N (2018) CD73: a new biomarker in triple-negative breast cancer. Transl Cancer Res 7(Suppl 5):S594–S596. https://doi.org/10.21037/tcr.2018.05.22

    Article  Google Scholar 

  42. Supernat A, Markiewicz A, Welnicka-Jaskiewicz M, Seroczynska B, Skokowski J, Sejda A, Szade J, Czapiewski P, Biernat W, Zaczek A (2012) CD73 expression as a potential marker of good prognosis in breast carcinoma. Appl Immunohistochem Mol Morphol 20(2):103–107. https://doi.org/10.1097/pai.0b013e3182311d82

    Article  CAS  PubMed  Google Scholar 

  43. Künzli BM, Bernlochner MI, Rath S, Käser S, Csizmadia E, Enjyoji K, Cowan P, d’Apice A, Dwyer K, Rosenberg R, Perren A, Friess H, Maurer CA, Robson SC (2011) Impact of CD39 and purinergic signalling on the growth and metastasis of colorectal cancer. Purinergic Signal 7:231–241. https://doi.org/10.1007/s11302-011-9228-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schmid S, Kübler M, Korcan Ayata C, Lazar Z, Haager B, Hoßfeld M, Meyer A, Cicko S, Elze M, Wiesemann S, Zissel G, Passlick B, Idzko M (2015) Altered purinergic signaling in the tumor associated immunologic microenvironment in metastasized non-small-cell lung cancer. Lung Cancer 90(3):516–521. https://doi.org/10.1016/j.lungcan.2015.10.005

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) Finance Code 001, FAPERGS (PPSUS-17/2551-0001455-3) and FINEP (Financiadora de Estudos e Projetos) research grant “Implantação, Modernização e Qualificação de Estrutura de Pesquisa da PUCRS” (PUCRSINFRA) # 01.11.0014-00. We thank MD Mathias A. Kunde for the help in blood collection.

Author information

Authors and Affiliations

Authors

Contributions

F.B.M, D.R, and A.R.C participated in the research design. F.V.G, A.R.C, J.B.S, R.O.M, B.Z.M, C.A.M, and L.R conducted the experiments. PE, A.P.F.L, and A.R.C performed data analysis. F.V.G, F.B.M, A.R.C, L.R, and wrote or contributed to the writing of the manuscript.

Corresponding author

Correspondence to Fernanda Bueno Morrone.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was carried out following the Declaration of Helsinki, and all subjects signed an Informed Consent Form previously approved by the Local Ethics Committee. The study was approved by the Ethical Committee of the Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre (CAAE: 65653717.0.0000.5336).

Informed consent

Informed consent was obtained from all individual participants included in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gheler, F.V., Cappellari, A.R., Renck, D. et al. AMP hydrolysis reduction in blood plasma of breast cancer elderly patients after different treatments. Mol Cell Biochem 476, 3719–3727 (2021). https://doi.org/10.1007/s11010-021-04199-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04199-x

Keywords

Navigation