Skip to main content
Log in

All-trans retinoic acid increases NF-κB activity in PMA-stimulated THP-1 cells upon unmethylated CpG challenge by enhancing cell surface TLR9 expression

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

An active metabolite of vitamin A, all-trans retinoic acid (ATRA), is known to exert immunomodulatory functions. This study investigates the possible immune potentiating effect of ATRA on NF-κB activity in human monocytic THP-1 cells after exposure to unmethylated CpG DNA ODN2006. We observed that challenge with ODN2006 significantly enhanced the NF-κB activity of PMA-differentiated THP-1 cells. ATRA synergistically enhanced NF-κB activity of cells, in a concentration- and time-dependent manner. The enhanced NF-κB activity of PMA-differentiated THP-1 cells after ODN2006 challenge was dependent on the RAR/RXR pathway. To determine the mechanism involved in increasing in the NF-κB activity of stimulated THP-1 cells, we examined the effects of PMA and ATRA on the expression of TLR9 (a receptor of ODN2006) in THP-1 cells. PMA treatment significantly enhanced both the intracellular and cell surface expression of TLR9, while ATRA alone showed no effect. However, ATRA synergistically enhanced the cell surface TLR9 expression of PMA-differentiated cells. To determine whether the ATRA-enhanced NF-κB activity is due to the enhanced cell surface TLR9 expression, we examined NF-κB activity after treatment with anti-TLR9 blocking antibody. Results revealed that the anti-TLR9 antibody treatment almost completely reverses the ATRA-enhanced NF-κB activity, suggesting that ATRA enhances NF-κB activity through upregulation of the cell surface TLR9 expression in PMA-differentiated and unmethylated CpG challenged THP-1 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

Abbreviations

ATRA:

All-trans retinoic acid

RAR:

Retinoic acid receptor

RXR:

Retinoid X receptor

TLR9:

Toll-like receptor 9

PMA:

Phorbol-12-myristate-13-acetate

References

  1. Diebold SS, Brencicova E (2013) Nucleic acids and endosomal pattern recognition: how to tell friend from foe? Front Cell Infect Microbiol 3:37. https://doi.org/10.3389/fcimb.2013.00037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barbalat R, Ewald SE, Mouchess ML, Barton GM (2011) Nucleic acid recognition by the innate immune system. Annu Rev Immunol 29:185–214. https://doi.org/10.1146/annurev-immunol-031210-101340

    Article  CAS  PubMed  Google Scholar 

  3. Leifer CA, Kennedy MN, Mazzoni A, Lee C, Kruhlak MJ et al (2004) TLR9 is localized in the endoplasmic reticulum prior to stimulation. J Immunol 173:1179–1183. https://doi.org/10.4049/jimmunol.173.2.1179

    Article  CAS  PubMed  Google Scholar 

  4. Rutz M, Metzger J, Gellert T, Luppa P, Lipford G et al (2004) Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur J Immunol 34:2541–2550. https://doi.org/10.1002/eji.200425218

    Article  CAS  PubMed  Google Scholar 

  5. Park B, Brinkmann MM, Spooner E, Lee CC, Kim YM et al (2008) Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9. Nat Immunol 9:1407–1414. https://doi.org/10.1038/ni.1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ewald SE, Lee BL, Lau L, Wickliffe KE, Shi GP et al (2008) The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456:658–662. https://doi.org/10.1038/nature07405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bauer S, Kirschning CJ, Hacker H, Redecke V, Hausmann S et al (2001) Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. PNAS 98:9237–9242. https://doi.org/10.1073/pnas.161293498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22:240–273. https://doi.org/10.1128/CMR.00046-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goodman DS (1984) Overview of current knowledge of metabolism of vitamin A and carotenoids12. JNCI J Natl Cancer Inst 73:1375–1379. https://doi.org/10.1093/jnci/73.6.1375

    Article  CAS  PubMed  Google Scholar 

  10. Schug TT, Berry DC, Shaw NS, Travis SN, Noy N (2007) Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell 129:723–733. https://doi.org/10.1016/j.cell.2007.02.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feng T, Cong Y, Qin H, Benveniste EN, Elson CO (2010) Generation of mucosal dendritic cells from bone marrow reveals a critical role of retinoic acid. J Immunol 185:5915. https://doi.org/10.4049/jimmunol.1001233

    Article  CAS  PubMed  Google Scholar 

  12. Iwata M, Hirakiyama A, Eshima Y, Kagechika H, Kato C et al (2004) Retinoic acid imprints gut-homing specificity on T cells. Immunity 21:527–538. https://doi.org/10.1016/j.immuni.2004.08.011

    Article  CAS  PubMed  Google Scholar 

  13. Mora JR, Iwata M, Eksteen B, Song SY, Junt T et al (2006) Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314:1157. https://doi.org/10.1126/science.1132742

    Article  CAS  PubMed  Google Scholar 

  14. Kim MH, Taparowsky EJ, Kim CH (2015) Retinoic acid differentially regulates the migration of innate lymphoid cell subsets to the gut. Immunity 43:107–119. https://doi.org/10.1016/j.immuni.2015.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mucida D, Park Y, Kim G, Turovskaya O, Scott I et al (2007) Reciprocal Th17 and regulatory T cell differentiation mediated by retinoic acid. Science 317:256. https://doi.org/10.1126/science.114569

    Article  CAS  PubMed  Google Scholar 

  16. Uematsu S, Fujimoto K, Jang MH, Yang BG, Jung YJ et al (2008) Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat Immunol 9:769–776. https://doi.org/10.1038/ni.1622

    Article  CAS  PubMed  Google Scholar 

  17. Hall JA, Cannons JL, Grainger JR, Santos LMD, Hand TW et al (2011) Essential role for retinoic acid in the promotion of CD4+ T cell effector responses via retinoic acid receptor alpha. Immunity 34:435–447. https://doi.org/10.1016/j.immuni.2011.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim CH (2018) Control of innate and adaptive lymphocytes by the RAR-retinoicacid axis. Immune Netw. https://doi.org/10.4110/in.2018.18.e1

    Article  PubMed  PubMed Central  Google Scholar 

  19. Seo GY, Jang YS, Kim HA, Lee MR, Park MH et al (2013) Retinoic acid, acting as a highly specific IgA isotype switch factor, cooperates with TGF-β1 to enhance the overall IgA response. J Leukoc Biol 94:325–335. https://doi.org/10.1189/jlb.0313128

    Article  CAS  PubMed  Google Scholar 

  20. Hatayama T, Segawa R, Mizuno N, Eguchi S, Akamatsu H et al (2018) All-trans retinoic acid enhances antibody production by inducing the expression of thymic stromal lymphopoietin protein. J Immunol 200:2670–2676. https://doi.org/10.4049/jimmunol.1701276

    Article  CAS  PubMed  Google Scholar 

  21. Park EK, Jung HS, Yang HI, Yoo MC, Kim KS (2007) Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. J Inflamm Res 56:45–50. https://doi.org/10.1007/s00011-007-6115-5

    Article  CAS  Google Scholar 

  22. Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10:940–954. https://doi.org/10.1096/fasebj.10.9.8801176

    Article  CAS  PubMed  Google Scholar 

  23. Krie AM, Wagner H (2000) Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today 21:521–526. https://doi.org/10.1016/S0167-5699(00)01719-9

    Article  Google Scholar 

  24. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745. https://doi.org/10.1038/35047123

    Article  CAS  PubMed  Google Scholar 

  25. Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20:709–760. https://doi.org/10.1146/annurev.immunol.20.100301.064842

    Article  CAS  PubMed  Google Scholar 

  26. Suzuki Y, Wakita D, Chamoto K, Narita Y, Tsuji T et al (2004) Liposome-encapsulated CpG oligodeoxynucleotides as a potent adjuvant for inducing Type 1 innate immunity. Cancer Res 64:8754–8760. https://doi.org/10.1158/0008-5472.CAN-04-1691

    Article  CAS  PubMed  Google Scholar 

  27. Shahriari S, Rezaeifard S, Moghimi HR, Khorramizadeh MR, Faghih Z (2017) Cell membrane and intracellular expression of toll-like receptor 9 (TLR9) in colorectal cancer and breast cancer cell-lines. Cancer Biomark 18:1–6. https://doi.org/10.3233/CBM-160260

    Article  CAS  Google Scholar 

  28. Matter ML, Zhang Z, Nordstedt C, Ruoslahti E (1998) The alpha5beta1 integrin mediates elimination of amyloid-beta peptide and protects against apoptosis. J Cell Biol 141:1019–1030. https://doi.org/10.1083/jcb.141.4.1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tanaka J, Sugimoto K, Shiraki K, Tameda M, Kusagawa S et al (2010) Functional cell surface expression of Toll-like receptor 9 promotes cell proliferation and survival in human hepatocellular carcinomas. Int J Oncol 37:805–814. https://doi.org/10.3892/ijo_00000730

    Article  CAS  PubMed  Google Scholar 

  30. Ewaschuk JB, Backer JL, Churchill TA, Obermeier F, Krause DO et al (2007) Surface expression of Toll-like receptor 9 is upregulated on intestinal epithelial cells in response to pathogenic bacterial DNA. Infect Immun 75:2572–2579. https://doi.org/10.1128/IAI.01662-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kauppila JH, Korvala J, Siirila K, Manni M, Makinen LK et al (2015) Toll-like receptor 9 mediates invasion and predicts prognosis in squamous cell carcinoma of the mobile tongue. J Oral Pathol Med 44:571–577. https://doi.org/10.1111/jop.12272

    Article  CAS  PubMed  Google Scholar 

  32. Takashiba S, Van Dyke TE, Amar S, Murayama Y, Soskolne AW et al (1999) Differentiation of monocytes to macrophages primes cells for lipopolysaccharide stimulation via accumulation of cytoplasmic nuclear factor kappaB. Infect Immun 67:5573–5578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Otero JE, Dai S, Alhawagri MA, Darwech I, Abu-Amer Y (2010) IKKbeta activation is sufficient for RANK-independent osteoclast differentiation and osteolysis. J Bone Miner Res 25:1282–1294. https://doi.org/10.1002/jbmr.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hellweg CE, Arenz A, Bogner S, Schmiz C, Baumstark-Khan C (2006) Activation of nuclear factor κB by different agents. Ann NY Acad Sci 1091:191–204. https://doi.org/10.1196/annals.1378.066

    Article  CAS  PubMed  Google Scholar 

  35. Dai X, Yamasaki K, Shirakata Y, Sayama K, Hashimoto K (2004) All-trans-retinoic acid induces interleukin-8 via the nuclear factor-κB and p38 mitogen-activated protein kinase pathways in normal human keratinocytes. J Invest Dermatol 123:1078–1085. https://doi.org/10.1111/j.0022-202X.2004.23503.x

    Article  CAS  PubMed  Google Scholar 

  36. Feng Z, Porter AG (1999) NF-κB/Rel proteins are required for neuronal differentiation of SH-SY5Y neuroblastoma cells. J Biol Chem 274:30341–30344. https://doi.org/10.1074/jbc.274.43.30341

    Article  CAS  PubMed  Google Scholar 

  37. Farina A, Masciulli MP, Tacconelli A, Cappabianca L, Santis GD et al (2002) All-trans-retinoic acid induces nuclear factor kappaB activation and matrix metalloproteinase-9 expression and enhances basement membrane invasivity of differentiation-resistant human SK-N-BE 9N neuroblastoma Cells. Cell Growth Differ 13:343–354

    CAS  PubMed  Google Scholar 

  38. Dorrington MG, Fraser IDC (2019) NF-κB signaling in macrophages: dynamics, crosstalk, and signal integration. Front Immunol 10:705. https://doi.org/10.3389/fimmu.2019.00705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsai MJ, O'Malley BW (1994) Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 63:451–486. https://doi.org/10.1146/annurev.bi.63.070194.002315

    Article  CAS  PubMed  Google Scholar 

  40. Pignatello MA, Kauffman FC, Levin AA (1997) Multiple factors contribute to the toxicity of the aromatic retinoid, TTNPB (Ro 13–7410): Binding Affinities and Disposition. Toxicol Appl Pharm 142:319–327. https://doi.org/10.1006/taap.1996.8047

    Article  CAS  Google Scholar 

  41. Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG et al (2004) TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 5:190–198. https://doi.org/10.1038/ni1028

    Article  CAS  PubMed  Google Scholar 

  42. Ahmad-Nejad P, Hacker H, Rutz M, Bauer S, Vabulas RM et al (2002) Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur J Immunol 32:1958–1968. https://doi.org/10.1002/1521-4141(200207)32:7<1958:AID-IMMU1958>3.0.CO;2-U

    Article  CAS  PubMed  Google Scholar 

  43. Gursel I, Gursel M, Ishii KJ, Klinman DM (2001) Sterically stabilized cationic liposomes improve the uptake and immunostimulatory activity of CpG oligonucleotides. J Immunol 167:3324–3328. https://doi.org/10.4049/jimmunol.167.6.3324

    Article  CAS  PubMed  Google Scholar 

  44. Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA et al (2001) Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194:863–869. https://doi.org/10.1084/jem.194.6.863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kiemer AK, Senaratne RH, Hoppstadter J, Diesel B, Riley LW et al (2009) Attenuated activation of macrophage TLR9 by DNA from virulent mycobacteria. J Innate Immun 1:29–45. https://doi.org/10.1159/000142731

    Article  CAS  PubMed  Google Scholar 

  46. Kim YM, Brinkmann MM, Paquet ME, Ploegh HL (2008) UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature 452:234–238. https://doi.org/10.1038/nature06726

    Article  CAS  PubMed  Google Scholar 

  47. Chuang TH, Lee J, Kline L, Mathison JC, Ulevitch RJ (2002) Toll-like receptor 9 mediates CpG-DNA signaling. J Leukoc Biol 73:538–544. https://doi.org/10.1038/nature06726

    Article  CAS  Google Scholar 

  48. Schmausser B, Andrulis M, Endrich S, Lee SK, Josenhans C et al (2004) Expression and subcellular distribution of toll-like receptors TLR4, TLR5 and TLR9 on the gastric epithelium in Helicobacter pylori infection. Clin Exp Immunol 136:521–526. https://doi.org/10.1111/j.1365-2249.2004.02464.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee J, Mo JH, Katakura K, Alkalay I, Rucker AN et al (2006) Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol 8:1327–1336. https://doi.org/10.1038/ncb1500

    Article  CAS  PubMed  Google Scholar 

  50. Eaton-Bassiri A, Dillon SB, Cunningham M, Rycyzyn MA, Mills J et al (2004) Toll-like receptor 9 can be expressed at the cell surface of distinct populations of tonsils and human peripheral blood mononuclear cells. Infect Immun 72:7202–7211. https://doi.org/10.1128/IAI.72.12.7202-7211.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dasari P, Nicholson IC, Hodge G, Dandie GW, Zola H (2005) Expression of toll-like receptors on B lymphocytes. Cell Immunol 236:140–145. https://doi.org/10.1016/j.cellimm.2005.08.020

    Article  CAS  PubMed  Google Scholar 

  52. Guerrier T, Pochard P, Lahiri A, Youinou P, Pers JO et al (2014) TLR9 expressed on plasma membrane acts as a negative regulator of human B cell response. J Autoimmun 51:23–29. https://doi.org/10.1016/j.jaut.2014.02.005

    Article  CAS  PubMed  Google Scholar 

  53. Saikh KU, Kissner TL, Sultana A, Ruthel G, Ulrich RG (2004) Human monocytes infected with Yersinia pestis express cell surface TLR9 and differentiate into dendritic cells. J Immunol 173:7426–7434. https://doi.org/10.4049/jimmunol.173.12.7426

    Article  CAS  PubMed  Google Scholar 

  54. Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107:7–11. https://doi.org/10.1172/JCI11830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bono MR, Tejon G, Flores-Santibañez F, Fernandez D, Rosemblatt M et al (2016) Retinoic acid as a modulator of T cell immunity. Nutrients. https://doi.org/10.3390/nu8060349

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ross SA, McCaffery PJ, Drager UC, De Luca LM (2000) Retinoids in embryonal development. Physiol Rev 80:1021–1054. https://doi.org/10.1152/physrev.2000.80.3.1021

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1A09083908).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Young Kim.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trinh, TA., Hoang, T.X. & Kim, J.Y. All-trans retinoic acid increases NF-κB activity in PMA-stimulated THP-1 cells upon unmethylated CpG challenge by enhancing cell surface TLR9 expression. Mol Cell Biochem 473, 167–177 (2020). https://doi.org/10.1007/s11010-020-03817-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03817-4

Keywords

Navigation