Skip to main content
Log in

Protein kinase CK2 impact on intracellular calcium homeostasis in prostate cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Protein kinase CK2 plays multiple roles in cell function in normal and disease states. CK2 is elevated in numerous types of cancer cells, and CK2 suppression of apoptosis represents a key link to the cancer cell phenotype. CK2 regulation of cell survival and death involves diverse processes, and our previous work suggested that mitochondrial machinery is a key locus of this function. One of the earliest responses of prostate cells to inhibition of CK2 is a change in mitochondrial membrane potential, possibly associated with Ca2+ signaling. Thus, in the present work, we investigated early impact of CK2 on intracellular Ca2+ dynamics. Three prostate cancer (PCa) cell lines, PC3-LN4, C4-2B, and 22Rv1, were studied. PCa cells were treated with the CK2 small molecule inhibitors 4,5,6,7-tetrabrombenzotriazole and CX-4945 followed by analysis of Ca2+ levels in various cellular compartments over time. The results showed dose-dependent loss in cytosolic Ca2+ levels starting within 2 min and reaching maximal loss within 5–10 min. There was a concomitant increase in Ca2+ in the endoplasmic reticulum (ER) and mitochondrial compartments. The results suggest that inhibition of CK2 activity results in a rapid movement of Ca2+ out of the cytosol and into the ER and mitochondria, which may be among the earliest contributory factors for induction of apoptosis in cells subjected to inhibition of CK2. In cells with death-inducing levels of CK2 inhibition, total cellular Ca2+ levels dropped at 2 h post-treatment. These novel observations represent a potential mechanism underlying regulation of cell survival and death by CK2 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahmed K (1999) Nuclear matrix and protein kinase CK2 signaling. Crit Rev Eukaryot Gene Expr 9(3–4):329–336

    Article  CAS  Google Scholar 

  2. Tawfic S, Yu S, Wang H, Faust R, Davis A, Ahmed K (2001) Protein kinase CK2 signal in neoplasia. Histol Histopathol 16(2):573–582

    CAS  PubMed  Google Scholar 

  3. Pinna LA (2002) Protein kinase CK2: a challenge to canons. J Cell Sci 115(Pt 20):3873–3878

    Article  CAS  Google Scholar 

  4. Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17(3):349–368. https://doi.org/10.1096/fj.02-0473rev

    Article  CAS  PubMed  Google Scholar 

  5. Guerra B, Issinger O-G (2008) Protein kinase CK2 in human diseases. Curr Med Chem 15(19):1870–1886. https://doi.org/10.1007/s00018-009-9148-9

    Article  CAS  PubMed  Google Scholar 

  6. St-Denis NA, Litchfield DW (2009) Protein kinase CK2 in health and disease: from birth to death: the role of protein kinase CK2 in the regulation of cell proliferation and survival. Cell Mol Life Sci 66(11–12):1817–1829

    Article  CAS  Google Scholar 

  7. Ahmed K, Yenice S, Davis A, Goueli SA (1993) Association of casein kinase 2 with nuclear chromatin in relation to androgenic regulation of rat prostate. Proc Natl Acad Sci USA 90(10):4426–4430

    Article  CAS  Google Scholar 

  8. Faust RA, Niehans G, Gapany M, Hoistad D, Knapp D, Cherwitz D, Davis A, Adams GL, Ahmed K (1999) Subcellular immunolocalization of protein kinase CK2 in normal and carcinoma cells. Int J Biochem Cell Biol 31(9):941–949. https://doi.org/10.1016/S1357-2725(99)00050-3

    Article  CAS  PubMed  Google Scholar 

  9. Faust M, Montenarh M (2000) Subcellular localization of protein kinase CK2. A key to its function? Cell Tissue Res 301(3):329–340

    Article  CAS  Google Scholar 

  10. Guerra B, Issinger O-G (1999) Protein kinase CK2 and its role in cellular proliferation, development and pathology. Electrophoresis 20(2):391–408. https://doi.org/10.1002/(SICI)1522-2683(19990201)20:2%3c391:AID-ELPS391%3e3.0.CO;2-N

    Article  CAS  PubMed  Google Scholar 

  11. Guo C, Yu S, Davis AT, Wang H, Green JE, Ahmed K (2001) A potential role of nuclear matrix-associated protein kinase CK2 in protection against drug-induced apoptosis in cancer cells. J Biol Chem 276(8):5992–5999. https://doi.org/10.1074/jbc.M004862200

    Article  CAS  PubMed  Google Scholar 

  12. Wang H, Davis A, Yu S, Ahmed K (2001) Response of cancer cells to molecular interruption of the CK2 signal. Mol Cell Biochem 227(1–2):167–174. https://doi.org/10.1023/A:1013112908734

    Article  CAS  PubMed  Google Scholar 

  13. Ahmed K, Gerber DA, Cochet C (2002) Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol 12(5):226–230

    Article  CAS  Google Scholar 

  14. Ahmad KA, Wang G, Unger G, Slaton J, Ahmed K (2008) Protein kinase CK2–a key suppressor of apoptosis. Adv Enzyme Regul 48:179–187. https://doi.org/10.1016/j.advenzreg.2008.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang G, Ahmad KA, Ahmed K (2005) Modulation of death receptor-mediated apoptosis by CK2. Mol Cell Biochem 274(1–2):201–205

    Article  CAS  Google Scholar 

  16. Wang G, Ahmad KA, Ahmed K (2006) Role of protein kinase CK2 in the regulation of tumor necrosis factor-related apoptosis inducing ligand-induced apoptosis in prostate cancer cells. Cancer Res 66(4):2242–2249. https://doi.org/10.1158/0008-5472.CAN-05-2772

    Article  CAS  PubMed  Google Scholar 

  17. Ahmad KA, Wang G, Ahmed K (2006) Intracellular hydrogen peroxide production is an upstream event in apoptosis induced by down-regulation of casein kinase 2 in prostate cancer cells. Mol Cancer Res 4(5):331–338. https://doi.org/10.1158/1541-7786.MCR-06-0073

    Article  CAS  PubMed  Google Scholar 

  18. Qaiser F, Trembley JH, Kren BT, Wu JJ, Naveed AK, Ahmed K (2014) Protein kinase CK2 inhibition induces cell death via early impact on mitochondrial function. J Cell Biochem 115(12):2103–2115. https://doi.org/10.1002/jcb.24887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058. https://doi.org/10.1016/j.cell.2007.11.028

    Article  CAS  PubMed  Google Scholar 

  20. Brini M, Ottolini D, Cali T, Carafoli E (2013) Calcium in health and disease. Metal ions in life sciences 13:81–137. https://doi.org/10.1007/978-94-007-7500-8_4

    Article  PubMed  Google Scholar 

  21. Ritaine A, Shapovalov G, Prevarskaya N (2017) Metabolic disorders and cancer: store-operated Ca(2+) entry in cancer: focus on IP3R-mediated Ca(2+) release from intracellular stores and its role in migration and invasion. Adv Exp Med Biol 993:623–637. https://doi.org/10.1007/978-3-319-57732-6_31

    Article  CAS  PubMed  Google Scholar 

  22. Slaton JW, Unger GM, Sloper DT, Davis AT, Ahmed K (2004) Induction of apoptosis by antisense CK2 in human prostate cancer xenograft model. Mol Cancer Res 2(12):712–721

    CAS  PubMed  Google Scholar 

  23. Liu C, Lou W, Zhu Y, Nadiminty N, Schwartz CT, Evans CP, Gao AC (2014) Niclosamide inhibits androgen receptor variants expression and overcomes enzalutamide resistance in castration-resistant prostate cancer. Clin Cancer Res 20(12):3198–3210. https://doi.org/10.1158/1078-0432.Ccr-13-3296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Trembley JH, Unger GM, Tobolt DK, Korman VL, Wang G, Ahmad KA, Slaton JW, Kren BT, Ahmed K (2011) Systemic administration of antisense oligonucleotides simultaneously targeting CK2alpha and alpha' subunits reduces orthotopic xenograft prostate tumors in mice. Mol Cell Biochem 356(1–2):21–35. https://doi.org/10.1007/s11010-011-0943-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lamboley CR, Kake Guena SA, Toure F, Hebert C, Yaddaden L, Nadeau S, Bouchard P, Wei-LaPierre L, Laine J, Rousseau EC, Frenette J, Protasi F, Dirksen RT, Pape PC (2015) New method for determining total calcium content in tissue applied to skeletal muscle with and without calsequestrin. J Gen Physiol 145(2):127–153. https://doi.org/10.1085/jgp.201411250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Trembley JH, Qaiser F, Kren BT, Ahmed K (2015) CK2—a global regulator of cell death. In: Ahmed K, Issinger O-G, Szyszka R (eds) Protein kinase CK2 cellular function in normal and disease states, Advances in Biochemistry in Health and Disease, vol 12. Springer, Switzerland, pp 159–181. https://doi.org/10.1007/978-3-319-14544-0_10

    Chapter  Google Scholar 

  27. Hessenauer A, Schneider CC, Gotz C, Montenarh M (2011) CK2 inhibition induces apoptosis via the ER stress response. Cell Signal 23(1):145–151. https://doi.org/10.1016/j.cellsig.2010.08.014

    Article  CAS  PubMed  Google Scholar 

  28. Trembley JH, Kren BT, Abedin MJ, Shaughnessy DP, Li Y, Dehm SM, Ahmed K (2019) CK2 Pro-survival role in prostate cancer is mediated via maintenance and promotion of androgen receptor and NFkappaB p65 expression. Pharmaceuticals 12(2):89. https://doi.org/10.3390/ph12020089

    Article  CAS  PubMed Central  Google Scholar 

  29. Csordas G, Renken C, Varnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA, Hajnoczky G (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174(7):915–921. https://doi.org/10.1083/jcb.200604016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Orrenius S, Gogvadze V, Zhivotovsky B (2015) Calcium and mitochondria in the regulation of cell death. Biochem Biophys Res Commun 460(1):72–81. https://doi.org/10.1016/j.bbrc.2015.01.137

    Article  CAS  PubMed  Google Scholar 

  31. Marchi S, Patergnani S, Missiroli S, Morciano G, Rimessi A, Wieckowski MR, Giorgi C, Pinton P (2018) Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium 69:62–72. https://doi.org/10.1016/j.ceca.2017.05.003

    Article  CAS  PubMed  Google Scholar 

  32. Fliniaux I, Germain E, Farfariello V, Prevarskaya N (2018) TRPs and Ca2+ in cell death and survival. Cell Calcium 69:4–18. https://doi.org/10.1016/j.ceca.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  33. Arrigoni G, Marin O, Pagano MA, Settimo L, Paolin B, Meggio F, Pinna LA (2004) Phosphorylation of calmodulin fragments by protein kinase CK2. Mech Aspects Struct Conseq Biochem 43(40):12788–12798. https://doi.org/10.1021/bi049365c

    Article  CAS  Google Scholar 

  34. Pan J, Zhang S, Borchers CH (2016) Protein species-specific characterization of conformational change induced by multisite phosphorylation. J Proteomics 134:138–143. https://doi.org/10.1016/j.jprot.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  35. Zhivotovsky B, Orrenius S (2011) Calcium and cell death mechanisms: a perspective from the cell death community. Cell Calcium 50(3):211–221. https://doi.org/10.1016/j.ceca.2011.03.003

    Article  CAS  PubMed  Google Scholar 

  36. Carafoli E, Krebs J (2016) Why calcium? How calcium became the best communicator. J Biol Chem 291(40):20849–20857. https://doi.org/10.1074/jbc.R116.735894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cali T, Brini M, Carafoli E (2017) Regulation of cell calcium and role of plasma membrane calcium ATPases. Int Rev Cell Mol Biol 332:259–296. https://doi.org/10.1016/bs.ircmb.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  38. Monteith GR, Prevarskaya N, Roberts-Thomson SJ (2017) The calcium-cancer signalling nexus. Nat Rev Cancer 17(6):367–380. https://doi.org/10.1038/nrc.2017.18

    Article  CAS  PubMed  Google Scholar 

  39. Grimm S (2012) The ER-mitochondria interface: the social network of cell death. Biochim Biophys Acta 1823(2):327–334. https://doi.org/10.1016/j.bbamcr.2011.11.018

    Article  CAS  PubMed  Google Scholar 

  40. Ivanova H, Kerkhofs M, La Rovere RM, Bultynck G (2017) Endoplasmic reticulum-mitochondrial Ca2+ fluxes underlying cancer cell survival. Front Oncol 7:70. https://doi.org/10.3389/fonc.2017.00070

    Article  PubMed  PubMed Central  Google Scholar 

  41. Stewart TA, Yapa KTDS (1848) Monteith GR (2015) Altered calcium signaling in cancer cells. Biochimica et Biophysica Acta (BBA) 10:2502–2511. https://doi.org/10.1016/j.bbamem.2014.08.016

    Article  CAS  Google Scholar 

  42. Naon D (1843) Scorrano L (2014) At the right distance: ER-mitochondria juxtaposition in cell life and death. Bba-Mol Cell Res 10:2184–2194. https://doi.org/10.1016/j.bbamcr.2014.05.011

    Article  CAS  Google Scholar 

  43. Stewart JM (2020) TRPV6 as a target for cancer therapy. J Cancer 11(2):374–387. https://doi.org/10.7150/jca.31640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lehen'kyi V, Flourakis M, Skryma R, Prevarskaya N (2007) TRPV6 channel controls prostate cancer cell proliferation via Ca(2+)/NFAT-dependent pathways. Oncogene 26(52):7380–7385. https://doi.org/10.1038/sj.onc.1210545

    Article  CAS  PubMed  Google Scholar 

  45. Prevarskaya N, Skryma R, Shuba Y (2018) Ion channels in cancer: are cancer hallmarks oncochannelopathies? Physiol Rev 98(2):559–621. https://doi.org/10.1152/physrev.00044.2016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

KA holds the title of Senior Research Career Scientist awarded by the U.S. Department of Veterans Affairs. M.A. was recipient of a scholarship awarded by the Higher Education Commission of Pakistan.

Disclaimer

The views expressed in this article are those of the authors and do not necessarily reflect the position or policy of the U.S. Department of Veterans Affairs or the U.S. government.

Funding

This work was supported by Merit Review research funds BX003282 awarded by the Department of Veterans Affairs (K.A.), and research grant R01CA150182 awarded by the National Cancer Institute, NIH, Department of Health and Human Services (K.A.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MA, JHT, KA; methodology, MA, JHT, BTK, KA; experimental work, MA, JHT; statistical analysis, MA, JHT; discussion of results and data, MA, JHT, BTK, AKN, KA; manuscript preparation, MA, JHT, KA; final review and editing, MA, JHT, BTK, AKN, KA; funding acquisition, KA.

Corresponding author

Correspondence to Khalil Ahmed.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest or competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, M., Kren, B.T., Naveed, A.K. et al. Protein kinase CK2 impact on intracellular calcium homeostasis in prostate cancer. Mol Cell Biochem 470, 131–143 (2020). https://doi.org/10.1007/s11010-020-03752-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03752-4

Keywords

Navigation