Skip to main content

Advertisement

Log in

Acidic residues of extracellular loop 3 of the Na+/H+ exchanger type 1 are important in cation transport

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mammalian Na+/H+ exchanger type I isoform (NHE1) is a ubiquitously expressed membrane protein that regulates intracellular pH (pHi) by removing one intracellular proton in exchange for one extracellular sodium ion. Abnormal activity of the protein occurs in cardiovascular disease and breast cancer. The purpose of this study is to examine the role of negatively charged amino acids of extracellular loop 3 (EL3) in the activity of the NHE protein. We mutated glutamic acid 217 and aspartic acid 226 to alanine, and to glutamine and asparagine, respectively. We examined effects on expression levels, cell surface targeting and activity of NHE1, and also characterized affinity for extracellular sodium and lithium ions. Individual mutation of these amino acids had little effect on protein function. However, mutation of both these amino acids together impaired transport, decreasing the Vmax for both Na+ and Li+ ions. We suggested that amino acids E217 and D226 form part of a negatively charged coordination sphere, which facilitates cation transport in the NHE1 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fliegel L (2005) The Na+/H+ exchanger isoform 1. Int J Biochem Cell Biol 37:33–37. https://doi.org/10.1016/j.biocel.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  2. Hendus-Altenburger R, Kragelund BB, Pedersen SF (2014) Structural dynamics and regulation of the mammalian SLC9A family of Na(+)/H(+) exchangers. Curr Top Membr 73:69–148. https://doi.org/10.1016/B978-0-12-800223-0.00002-5

    Article  CAS  PubMed  Google Scholar 

  3. Lee BL, Sykes BD, Fliegel L (2013) Structural and functional insights into the cardiac Na(+)/H(+) exchanger. J Mol Cell Cardiol 61:60–67. https://doi.org/10.1016/j.yjmcc.2012.11.019

    Article  CAS  PubMed  Google Scholar 

  4. Karmazyn M, Gan T, Humphreys RA, Yoshida H, Kusumoto K (1999) The myocardial Na+-H+ exchange Structure, regulation, and its role in heart disease. Circ Res 85:777–786

    Article  CAS  Google Scholar 

  5. Amith SR, Fliegel L (2017) Na(+)/H(+) exchanger-mediated hydrogen ion extrusion as a carcinogenic signal in triple-negative breast cancer etiopathogenesis and prospects for its inhibition in therapeutics. Semin Cancer Biol 43:35–41. https://doi.org/10.1016/j.semcancer.2017.01.004

    Article  CAS  PubMed  Google Scholar 

  6. Amith SR, Fliegel L (2016) The Na+/H+ exchanger in metastasis. Aging (Albany NY) 8:1291. https://doi.org/10.18632/aging.101002

    Article  Google Scholar 

  7. Reshkin SJ, Greco MR, Cardone RA (2014) Role of pHi, and proton transporters in oncogene-driven neoplastic transformation. Philos Trans R Soc Lond B Biol Sci 369:20130100. https://doi.org/10.1098/rstb.2013.0100

    Article  PubMed  PubMed Central  Google Scholar 

  8. Karmazyn M (2013) NHE-1: still a viable therapeutic target. J Mol Cell Cardiol 61:77–82. https://doi.org/10.1016/j.yjmcc.2013.02.006

    Article  CAS  PubMed  Google Scholar 

  9. Wakabayashi S, Pang T, Su X, Shigekawa M (2000) A novel topology model of the human Na(+)/H(+) exchanger isoform 1. J Biol Chem 275:7942–7949

    Article  CAS  Google Scholar 

  10. Liu Y, Basu A, Li X, Fliegel L (2015) Topological analysis of the Na/H exchanger. Biochim Biophys Acta 1848:2385–2393. https://doi.org/10.1016/j.bbamem.2015.07.011

    Article  CAS  PubMed  Google Scholar 

  11. Dutta D, Fliegel L (2019) Molecular modeling and inhibitor docking analysis of the Na(+)/H(+) exchanger isoform one (1). Biochem Cell Biol 97:333–343. https://doi.org/10.1139/bcb-2018-0158

    Article  CAS  PubMed  Google Scholar 

  12. Mitchell SM, Lee E, Garcia ML, Stephan MM (2004) Structure and function of extracellular loop 4 of the serotonin transporter as revealed by cysteine-scanning mutagenesis. J Biol Chem 279:24089–24099. https://doi.org/10.1074/jbc.M311173200M311173200

    Article  CAS  PubMed  Google Scholar 

  13. Grunewald M, Menaker D, Kanner BI (2002) Cysteine-scanning mutagenesis reveals a conformationally sensitive reentrant pore-loop in the glutamate transporter GLT-1. J Biol Chem 277:26074–26080. https://doi.org/10.1074/jbc.M202248200

    Article  CAS  PubMed  Google Scholar 

  14. Lopez-Corcuera B, Nunez E, Martinez-Maza R, Geerlings A, Aragon C (2001) Substrate-induced conformational changes of extracellular loop 1 in the glycine transporter GLYT2. J Biol Chem 276:43463–43470. https://doi.org/10.1074/jbc.M107438200

    Article  CAS  PubMed  Google Scholar 

  15. Capendeguy O, Chodanowski P, Michielin O, Horisberger JD (2006) Access of extracellular cations to their binding sites in Na, K-ATPase:role of the second extracellular loop of the alpha subunit. J Gen Physiol 127:341–352. https://doi.org/10.1085/jgp.200509418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Capendeguy O, Horisberger JD (2005) The role of the third extracellular loop of the Na+, K+-ATPase alpha subunit in a luminal gating mechanism. J Physiol 565:207–218. https://doi.org/10.1113/jphysiol.2004.080218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dutta D, Ullah A, Bibi S, Fliegel L (2019) Functional analysis of conserved transmembrane charged residues and a yeast specific extracellular loop of the plasma membrane Na(+)/H(+) antiporter of schizosaccharomyces pombe. Sci Rep 9:6191. https://doi.org/10.1038/s41598-019-42658-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee BL, Liu Y, Li X, Sykes BD, Fliegel L (2012) Structural and functional analysis of extracellular loop 4 of the Nhe1 isoform of the Na(+)/H(+) exchanger. Biochim Biophys Acta 1818:2783–2790. https://doi.org/10.1016/j.bbamem.2012.06.021

    Article  CAS  PubMed  Google Scholar 

  19. Lee BL, Li X, Liu Y, Sykes BD, Fliegel L (2009) Structural and functional analysis of extracellular loop 2 of the Na(+)/H(+) exchanger. Biochim Biophys Acta 1788:2481–2488. https://doi.org/10.1016/j.bbamem.2009.10.004

    Article  CAS  PubMed  Google Scholar 

  20. Slepkov ER, Rainey JK, Li X, Liu Y, Cheng FJ, Lindhout DA, Sykes BD, Fliegel L (2005) Structural and functional characterization of transmembrane segment IV of the NHE1 isoform of the Na+/H+ exchanger. J Biol Chem 280:17863–17872

    Article  CAS  Google Scholar 

  21. Wong KY, McKay R, Liu Y, Towle K, Elloumi Y, Li X, Quan S, Dutta D, Sykes BD, Fliegel L (2018) Diverse residues of intracellular loop 5 of the Na(+)/H(+) exchanger modulate proton sensing, expression, activity and targeting. Biochim Biophys Acta 1861:191–200. https://doi.org/10.1016/j.bbamem.2018.07.014

    Article  CAS  Google Scholar 

  22. Slepkov E, Ding J, Han J, Fliegel L (2007) Mutational analysis of potential pore-lining amino acids in TM IV of the Na(+)/H(+) exchanger. Biochim Biophys Acta 1768:2882–2889

    Article  CAS  Google Scholar 

  23. Silva NL, Wang H, Harris CV, Singh D, Fliegel L (1997) Characterization of the Na+/H+ exchanger in human choriocarcinoma (BeWo) cells. Pflugers Archiv Eur J Physiol 433:792–802

    Article  CAS  Google Scholar 

  24. Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H (2005) Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–1202

    Article  CAS  Google Scholar 

  25. Lee C, Kang HJ, von Ballmoos C, Newstead S, Uzdavinys P, Dotson DL, Iwata S, Beckstein O, Cameron AD, Drew D (2013) A two-domain elevator mechanism for sodium/proton antiport. Nature 501:573–577. https://doi.org/10.1038/nature12484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wohlert D, Kuhlbrandt W, Yildiz O (2014) Structure and substrate ion binding in the sodium/proton antiporter PaNhaP. Elife 3:e03579. https://doi.org/10.7554/eLife.03579

    Article  PubMed  PubMed Central  Google Scholar 

  27. Goswami P, Paulino C, Hizlan D, Vonck J, Yildiz O, Kuhlbrandt W (2011) Structure of the archaeal Na+/H+ antiporter NhaP1 and functional role of transmembrane helix 1. Embo J 30:439–449. https://doi.org/10.1038/emboj.2010.321

    Article  CAS  PubMed  Google Scholar 

  28. Dibrov P, Fliegel L (1998) Comparative molecular analysis of Na+/H+ exchangers: a unified model for Na+/H+ antiport? FEBS Lett 424:1–5

    Article  CAS  Google Scholar 

  29. Ding J, Rainey JK, Xu C, Sykes BD, Fliegel L (2006) Structural and functional characterization of transmembrane segment VII of the Na+/H+ exchanger isoform 1. J Biol Chem 281:29817–29829

    Article  CAS  Google Scholar 

  30. Tzeng J, Lee BL, Sykes BD, Fliegel L (2011) Structural and functional analysis of critical amino acids in TMVI of the NHE1 isoform of the Na+/H+ exchanger. Biochim Biophys Acta 1808:2327–2335. https://doi.org/10.1016/j.bbamem.2011.05.004

    Article  CAS  PubMed  Google Scholar 

  31. Tzeng J, Lee BL, Sykes BD, Fliegel L (2010) Structural and functional analysis of transmembrane segment VI of the NHE1 isoform of the Na+/H+ exchanger. J Biol Chem 285:36656–36665. https://doi.org/10.1074/jbc.M110.161471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li X, Fliegel L (2015) A novel human mutation in the SLC9A1 gene results in abolition of Na+/H+ exchanger activity. PLoS ONE 10:e0119453. https://doi.org/10.1371/journal.pone.0119453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fuster D, Moe OW, Hilgemann DW (2004) Lipid- and mechanosensitivities of sodium/hydrogen exchangers analyzed by electrical methods. Proc Natl Acad Sci USA 101:10482–10487. https://doi.org/10.1073/pnas.0403930101

    Article  CAS  PubMed  Google Scholar 

  34. Aharonovitz O, Zaun HC, Balla T, York JD, Orlowski J, Grinstein S (2000) Intracellular pH regulation by Na(+)/H(+) exchange requires phosphatidylinositol 4,5-bisphosphate. J Cell Biol 150:213–224

    Article  CAS  Google Scholar 

  35. Nygaard EB, Lagerstedt JO, Bjerre G, Shi B, Budamagunta M, Poulsen KA, Meinild S, Rigor RR, Voss JC, Cala PM, Pedersen SF (2011) Structural modeling and electron paramagnetic resonance spectroscopy of the human Na+/H+ exchanger isoform 1, NHE1. J Biol Chem 286:634–648. https://doi.org/10.1074/jbc.M110.159202

    Article  CAS  PubMed  Google Scholar 

  36. Jinadasa T, Josephson CB, Boucher A, Orlowski J (2015) Determinants of cation permeation and drug sensitivity in predicted transmembrane Helix 9 and adjoining exofacial Re-entrant loop 5 of Na+/H+ exchanger NHE1. J Biol Chem 290:18173–18186. https://doi.org/10.1074/jbc.M115.642199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by funding to LF by CIHR (MOP-97816).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry Fliegel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Quan, S., Corsiatto, T. et al. Acidic residues of extracellular loop 3 of the Na+/H+ exchanger type 1 are important in cation transport. Mol Cell Biochem 468, 13–20 (2020). https://doi.org/10.1007/s11010-020-03707-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03707-9

Keywords

Navigation