Skip to main content
Log in

Adipose-derived stem cell-conditioned medium protects fibroblasts at different senescent degrees from UVB irradiation damages

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Adipose-derived stem cells (ADSCs) and their derivatives have aroused intense interest in fields of dermatological and aesthetic medicine. As a major component detected in ADSCs secretome, platelet-derived growth factor AA (PDGF-AA) has been reported mediating extracellular matrix deposition and remodeling, thus might contribute to its anti-aging effect. On the basis of establishing an experimental model that simulate actual skin aging by exposing HDFs to both intrinsic and extrinsic aging factors, we pretreated human dermal fibroblasts (HDFs) with ADSC-conditioned medium (ADSC-CM) before being irradiated, aiming at exploring preventive effects of ADSCs secretome against aging damages. 48 h after irradiation, we detected cellular proliferation; β-galactosidase stain; mRNA expressions of MMP-1, MMP-9, and TIMP-1; and protein expressions of collagen I, collagen III, and elastin. Moreover, we detected related protein expression of PI3K/Akt signal pathway, which can be activated by PDGF-AA and was newly found to promote extracellular matrix protein synthesis. Concentration of PDGF-AA in the prepared ADSC-CM decreased over time and maintained excellent bioactivity at low temperature until the 11th week. ADSC-CM pretreatment can slightly or significantly improve cellular proliferative activity and reduce cellular senescence in irradiated HDFs. Besides, ADSC-CM pretreatment increased collagen I, collagen III, elastin, and TIMP-1 expressions but decreased MMP-1 and MMP-9 expressions both in irradiated and nonirradiated HDFs. ADSC-CM pretreatment significantly increased pAkt protein expression, and ECM protein expression greatly decreased in case of LY294002 application. The results were similar in three generations of HDFs, yet varied with different degrees. Generally, ADSC-CM we prepared demonstrates a certain degree of positive role in preventing HDFs from intrinsic and extrinsic aging damages and that PDGF-AA may contribute to making it become effective with some other components in ADSC-CM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data in the present article have been displayed as figures and tables above.

References

  1. Naylor EC, Watson RE, Sherratt MJ (2011) Molecular aspects of skin ageing. Maturitas 69:249–256. https://doi.org/10.1016/j.maturitas.2011.04.011

    Article  CAS  PubMed  Google Scholar 

  2. Warren R, Gartstein V, Kligman AM, Montagna W, Allendorf RA, Ridder GM (1991) Age, sunlight, and facial skin: a histologic and quantitative study. J Am Acad Dermatol 25:751–760

    Article  CAS  Google Scholar 

  3. Bailey AJ (2001) Molecular mechanisms of ageing in connective tissues. Mech Ageing Dev 122:735–755

    Article  CAS  Google Scholar 

  4. Tashiro K, Shishido M, Fujimoto K, Hirota Y, Yo K, Gomi T, Tanaka Y (2014) Age-related disruption of autophagy in dermal fibroblasts modulates extracellular matrix components. Biochem Biophys Res Commun 443:167–172. https://doi.org/10.1016/j.bbrc.2013.11.066

    Article  CAS  PubMed  Google Scholar 

  5. Wang T, Guo S, Liu X, Xv N, Zhang S (2015) Protective effects of adipose-derived stem cells secretome on human dermal fibroblasts from ageing damages. Int J Clin Exp Pathol 8:15739–15748

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228. https://doi.org/10.1089/107632701300062859

    Article  CAS  PubMed  Google Scholar 

  7. Miana VV, Gonzalez EAP (2018) Adipose tissue stem cells in regenerative medicine. Ecancermedicalscience 12:822. https://doi.org/10.3332/ecancer.2018.822

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lin HP, Chan TM, Fu RH, Chuu CP, Chiu SC, Tseng YH, Liu SP, Lai KC, Shih MC, Lin ZS, Chen HS, Yeh DC, Lin SZ (2015) Applicability of adipose-derived stem cells in type 1 diabetes mellitus. Cell Transpl 24:521–532. https://doi.org/10.3727/096368915X686977

    Article  Google Scholar 

  9. Chan TM, Chen JY, Ho LI, Lin HP, Hsueh KW, Liu DD, Chen YH, Hsieh AC, Tsai NM, Hueng DY, Tsai ST, Chou PW, Lin SZ, Harn HJ (2014) ADSC therapy in neurodegenerative disorders. Cell Transpl 23:549–557. https://doi.org/10.3727/096368914X678445

    Article  Google Scholar 

  10. Won CH, Park GH, Wu X, Tran TN, Park KY, Park BS, Kim DY, Kwon O, Kim KH (2017) The basic mechanism of hair growth stimulation by adipose-derived stem cells and their secretory factors. Curr Stem Cell Res Ther 12:535–543. https://doi.org/10.2174/1574888X12666170829161058

    Article  CAS  PubMed  Google Scholar 

  11. Kim MH, Wu WH, Choi JH, Kim J, Jun JH, Ko Y, Lee JH (2017) Galectin-1 from conditioned medium of three-dimensional culture of adipose-derived stem cells accelerates migration and proliferation of human keratinocytes and fibroblasts. Wound Repair Regen. https://doi.org/10.1111/wrr.12579

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nakhaeifard M, Haji Ghasem Kashani M, Goudarzi I, Rezaei A (2018) Conditioned medium protects dopaminergic neurons in parkinsonian rats. Cell J 20:348–354. https://doi.org/10.22074/cellj.2018.5343

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jeong JH, Fan Y, You GY, Choi TH, Kim S (2015) Improvement of photoaged skin wrinkles with cultured human fibroblasts and adipose-derived stem cells: a comparative study. J Plast Reconstr Aesthet Surg 68:372–381. https://doi.org/10.1016/j.bjps.2014.10.045

    Article  PubMed  Google Scholar 

  14. Xu X, Wang HY, Zhang Y, Liu Y, Li YQ, Tao K, Wu CT, Jin JD, Liu XY (2014) Adipose-derived stem cells cooperate with fractional carbon dioxide laser in antagonizing photoaging: a potential role of Wnt and beta-catenin signaling. Cell Biosci 4:24. https://doi.org/10.1186/2045-3701-4-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Song SY, Jung JE, Jeon YR, Tark KC, Lew DH (2011) Determination of adipose-derived stem cell application on photo-aged fibroblasts, based on paracrine function. Cytotherapy 13:378–384. https://doi.org/10.3109/14653249.2010.530650

    Article  CAS  PubMed  Google Scholar 

  16. Wang X, Shu X, Huo W, Zou L, Li L (2017) Efficacy of protein extracts from medium of Adipose-derived stem cells via microneedles on Asian skin. J Cosmet Laser Ther. https://doi.org/10.1080/14764172.2017.1400171

    Article  PubMed  Google Scholar 

  17. Gaur M, Dobke M, Lunyak VV (2017) Mesenchymal stem cells from adipose tissue in clinical applications for dermatological indications and skin aging. Int J Mol Sci 18:208. https://doi.org/10.3390/ijms18010208

    Article  CAS  PubMed Central  Google Scholar 

  18. Zhou BR, Xu Y, Guo SL, Xu Y, Wang Y, Zhu F, Permatasari F, Wu D, Yin ZQ, Luo D (2013) The effect of conditioned media of adipose-derived stem cells on wound healing after ablative fractional carbon dioxide laser resurfacing. Biomed Res Int 2013:519126. https://doi.org/10.1155/2013/519126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peinado JR, Pardo M, de la Rosa O, Malagon MM (2012) Proteomic characterization of adipose tissue constituents, a necessary step for understanding adipose tissue complexity. Proteomics 12:607–620. https://doi.org/10.1002/pmic.201100355

    Article  CAS  PubMed  Google Scholar 

  20. Kim MS, Song HJ, Lee SH, Lee CK (2014) Comparative study of various growth factors and cytokines on type I collagen and hyaluronan production in human dermal fibroblasts. J Cosmet Dermatol 13:44–51. https://doi.org/10.1111/jocd.12073

    Article  PubMed  Google Scholar 

  21. Seikrit C, Henkel C, van Roeyen CR, Bokemeyer D, Eitner F, Martin IV, Boor P, Knuchel R, Meyer HE, Muller-Newen G, Eriksson U, Floege J, Ostendorf T (2013) Biological responses to PDGF-AA versus PDGF-CC in renal fibroblasts. Nephrol Dial Transpl 28:889–900. https://doi.org/10.1093/ndt/gfs509

    Article  CAS  Google Scholar 

  22. Yeo EJ, Hwang YC, Kang CM, Kim IH, Kim DI, Parka JS, Choy HE, Park WY, Park SC (2000) Senescence-like changes induced by hydroxyurea in human diploid fibroblasts. Exp Gerontol 35:553–571

    Article  CAS  Google Scholar 

  23. Yeo EJ, Hwang YC, Kang CM, Choy HE, Park SC (2000) Reduction of UV-induced cell death in the human senescent fibroblasts. Mol Cells 10:415–422

    CAS  PubMed  Google Scholar 

  24. Shin H, Won CH, Chung WK, Park BS (2017) Up-to-date clinical trials of hair regeneration using conditioned media of adipose-derived stem cells in male and female pattern hair loss. Curr Stem Cell Res Ther 12:524–530. https://doi.org/10.2174/1574888X12666170504120244

    Article  CAS  PubMed  Google Scholar 

  25. Zhang W, Bai X, Zhao B, Li Y, Zhang Y, Li Z, Wang X, Luo L, Han F, Zhang J, Han S, Cai W, Su L, Tao K, Shi J, Hu D (2018) Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway. Exp Cell Res 370:333–342. https://doi.org/10.1016/j.yexcr.2018.06.035

    Article  CAS  PubMed  Google Scholar 

  26. Kapur SK, Katz AJ (2013) Review of the adipose derived stem cell secretome. Biochimie 95:2222–2228. https://doi.org/10.1016/j.biochi.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  27. Gross SM, Rotwein P (2016) Unraveling growth factor signaling and cell cycle progression in individual fibroblasts. J Biol Chem 291:14628–14638. https://doi.org/10.1074/jbc.M116.734194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Simm A, Nestler M, Hoppe V (1998) Mitogenic effect of PDGF-AA on cardiac fibroblasts. Basic Res Cardiol 93(Suppl 3):40–43

    Article  CAS  Google Scholar 

  29. Yang SY, Xu GM (2001) Expression of PDGF and its receptor as well as their relationship to proliferating activity and apoptosis of meningiomas in human meningiomas. J Clin Neurosci 8(Suppl 1):49–53. https://doi.org/10.1054/jocn.2001.0877

    Article  PubMed  Google Scholar 

  30. Vantler M, Huntgeburth M, Caglayan E, Ten Freyhaus H, Schnabel P, Rosenkranz S (2006) PI3-kinase/Akt-dependent antiapoptotic signaling by the PDGF alpha receptor is negatively regulated by Src family kinases. FEBS Lett 580:6769–6776. https://doi.org/10.1016/j.febslet.2006.11.034

    Article  CAS  PubMed  Google Scholar 

  31. Donovan J, Shiwen X, Norman J, Abraham D (2013) Platelet-derived growth factor alpha and beta receptors have overlapping functional activities towards fibroblasts. Fibrogenesis Tissue Repair 6:10. https://doi.org/10.1186/1755-1536-6-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schneider L, Cammer M, Lehman J, Nielsen SK, Guerra CF, Veland IR, Stock C, Hoffmann EK, Yoder BK, Schwab A, Satir P, Christensen ST (2010) Directional cell migration and chemotaxis in wound healing response to PDGF-AA are coordinated by the primary cilium in fibroblasts. Cell Physiol Biochem 25:279–292. https://doi.org/10.1159/000276562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rakhila H, Al-Akoum M, Bergeron ME, Leboeuf M, Lemyre M, Akoum A, Pouliot M (2016) Promotion of angiogenesis and proliferation cytokines patterns in peritoneal fluid from women with endometriosis. J Reprod Immunol 116:1–6. https://doi.org/10.1016/j.jri.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  34. Glady A, Tanaka M, Moniaga CS, Yasui M, Hara-Chikuma M (2018) Involvement of NADPH oxidase 1 in UVB-induced cell signaling and cytotoxicity in human keratinocytes. Biochem Biophys Rep 14:7–15. https://doi.org/10.1016/j.bbrep.2018.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jia Y, Qin Q, Fang CP, Shen W, Sun TT, Huang YL, Li WJ, Deng AM (2018) UVB induces apoptosis via downregulation of CALML3-dependent JNK1/2 and ERK1/2 pathways in cataract. Int J Mol Med 41:3041–3050. https://doi.org/10.3892/ijmm.2018.3478

    Article  CAS  PubMed  Google Scholar 

  36. Kim WS, Park BS, Park SH, Kim HK, Sung JH (2009) Antiwrinkle effect of adipose-derived stem cell: activation of dermal fibroblast by secretory factors. J Dermatol Sci 53:96–102. https://doi.org/10.1016/j.jdermsci.2008.08.007

    Article  CAS  PubMed  Google Scholar 

  37. Kim WS, Park BS, Kim HK, Park JS, Kim KJ, Choi JS, Chung SJ, Kim DD, Sung JH (2008) Evidence supporting antioxidant action of adipose-derived stem cells: protection of human dermal fibroblasts from oxidative stress. J Dermatol Sci 49:133–142. https://doi.org/10.1016/j.jdermsci.2007.08.004

    Article  CAS  PubMed  Google Scholar 

  38. Diez C, Nestler M, Friedrich U, Vieth M, Stolte M, Hu K, Hoppe J, Simm A (2001) Down-regulation of Akt/PKB in senescent cardiac fibroblasts impairs PDGF-induced cell proliferation. Cardiovasc Res 49:731–740

    Article  CAS  Google Scholar 

  39. Kohl E, Steinbauer J, Landthaler M, Szeimies RM (2011) Skin ageing. J Eur Acad Dermatol Venereol 25:873–884. https://doi.org/10.1111/j.1468-3083.2010.03963.x

    Article  CAS  PubMed  Google Scholar 

  40. Calleja-Agius J, Brincat M, Borg M (2013) Skin connective tissue and ageing. Best Pract Res Clin Obstet Gynaecol 27:727–740. https://doi.org/10.1016/j.bpobgyn.2013.06.004

    Article  PubMed  Google Scholar 

  41. Vincenti MP, White LA, Schroen DJ, Benbow U, Brinckerhoff CE (1996) Regulating expression of the gene for matrix metalloproteinase-1 (collagenase): mechanisms that control enzyme activity, transcription, and mRNA stability. Crit Rev Eukaryot Gene Expr 6:391–411

    Article  CAS  Google Scholar 

  42. Van Doren SR (2015) Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol 44–46:224–231. https://doi.org/10.1016/j.matbio.2015.01.005

    Article  CAS  PubMed  Google Scholar 

  43. Cho JW, Kang MC, Lee KS (2010) TGF-beta1-treated ADSCs-CM promotes expression of type I collagen and MMP-1, migration of human skin fibroblasts, and wound healing in vitro and in vivo. Int J Mol Med 26:901–906

    CAS  PubMed  Google Scholar 

  44. Jung H, Kim HH, Lee DH, Hwang YS, Yang HC, Park JC (2011) Transforming growth factor-beta 1 in adipose derived stem cells conditioned medium is a dominant paracrine mediator determines hyaluronic acid and collagen expression profile. Cytotechnology 63:57–66. https://doi.org/10.1007/s10616-010-9327-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim WS, Park SH, Ahn SJ, Kim HK, Park JS, Lee GY, Kim KJ, Whang KK, Kang SH, Park BS, Sung JH (2008) Whitening effect of adipose-derived stem cells: a critical role of TGF-beta 1. Biol Pharm Bull 31:606–610

    Article  CAS  Google Scholar 

  46. Kisand K, Tamm AE, Lintrop M, Tamm AO (2018) New insights into the natural course of knee osteoarthritis: early regulation of cytokines and growth factors, with emphasis on sex-dependent angiogenesis and tissue remodeling. A pilot study. Osteoarthr Cartil 26:1045–1054. https://doi.org/10.1016/j.joca.2018.05.009

    Article  CAS  PubMed  Google Scholar 

  47. Robbins JR, McGuire PG, Wehrle-Haller B, Rogers SL (1999) Diminished matrix metalloproteinase 2 (MMP-2) in ectomesenchyme-derived tissues of the Patch mutant mouse: regulation of MMP-2 by PDGF and effects on mesenchymal cell migration. Dev Biol 212:255–263. https://doi.org/10.1006/dbio.1999.9373

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Q, Lai S, Hou X, Cao W, Zhang Y, Zhang Z (2018) Protective effects of PI3K/Akt signal pathway induced cell autophagy in rat knee joint cartilage injury. Am J Transl Res 10:762–770

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang X, Liang D, Lian X, Jiang Y, He H, Liang W, Zhao Y, Chi ZH (2016) Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism. Apoptosis 21:721–736. https://doi.org/10.1007/s10495-016-1234-5

    Article  CAS  PubMed  Google Scholar 

  50. Ito M, Yurube T, Kakutani K, Maeno K, Takada T, Terashima Y, Kakiuchi Y, Takeoka Y, Miyazaki S, Kuroda R, Nishida K (2017) Selective interference of mTORC1/RAPTOR protects against human disc cellular apoptosis, senescence, and extracellular matrix catabolism with Akt and autophagy induction. Osteoarthr Cartil 25:2134–2146. https://doi.org/10.1016/j.joca.2017.08.019

    Article  CAS  PubMed  Google Scholar 

  51. Wada Y, Yoshida K, Tsutani Y, Shigematsu H, Oeda M, Sanada Y, Suzuki T, Mizuiri H, Hamai Y, Tanabe K, Ukon K, Hihara J (2007) Neutrophil elastase induces cell proliferation and migration by the release of TGF-alpha, PDGF and VEGF in esophageal cell lines. Oncol Rep 17:161–167

    CAS  PubMed  Google Scholar 

  52. Han J, Jin W, Ho NA, Hong J, Kim YJ, Shin Y, Lee H, Suh JW (2018) Decursin and decursinol angelate improve wound healing by upregulating transcription of genes encoding extracellular matrix remodeling proteins, inflammatory cytokines, and growth factors in human keratinocytes. Biochem Biophys Res Commun 499:979–984. https://doi.org/10.1016/j.bbrc.2018.04.031

    Article  CAS  PubMed  Google Scholar 

  53. Tamariz-Dominguez E, Castro-Munozledo F, Kuri-Harcuch W (2002) Growth factors and extracellular matrix proteins during wound healing promoted with frozen cultured sheets of human epidermal keratinocytes. Cell Tissue Res 307:79–89. https://doi.org/10.1007/s004410100450

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present article was supported by the Key Laboratory for Immunology and Dermatology of Health’s Ministry, in the First Hospital of China Medical University.

Funding

This work was financially supported by National Natural Science Foundation of China (Grant No. 51272286), the Liaoning Medical Peak Construction Project (2010014), and the Natural Science Foundation of Liaoning province (20102296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Guo.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest to disclose regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 43876 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Wang, T., Zhang, S. et al. Adipose-derived stem cell-conditioned medium protects fibroblasts at different senescent degrees from UVB irradiation damages. Mol Cell Biochem 463, 67–78 (2020). https://doi.org/10.1007/s11010-019-03630-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03630-8

Keywords

Navigation