Skip to main content

Advertisement

Log in

Empagliflozin restores the integrity of the endothelial glycocalyx in vitro

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The antihyperglycemic agent empagliflozin not only improves glycemic control but has also been associated with clinically meaningful reductions in cardiovascular events. Studies have shown that empagliflozin significantly reduces cardiovascular death and heart failure-associated hospitalizations. Given that endothelial dysfunction is closely linked with the pathogenesis of atherosclerotic cardiovascular disease, we hypothesized that the cardiovascular benefits observed with empagliflozin may be a result of its positive impact on the health of the endothelial glycocalyx (GCX), a critical component for the endothelium homeostasis. Human abdominal aortic endothelial cells (HAAECs) were either statically cultured or subjected to a steady wall shear stress of 10 dyne/cm2. Empagliflozin (50 µM, 24 h) restored heparinase III-mediated GCX disruption and the normal mechanotransduction responses in GCX-compromised HAAECs while reducing the attachment of all-trans retinoic acid-transformed NB4 cells to HAAECs. The current body of work suggests that the cardioprotective properties previously reported for empagliflozin may in part be due to the ability of empagliflozin to preserve and restore the structural integrity of the GCX, which in turn helps to maintain vascular health by promoting an anti-inflammatory endothelium, in the presence of a pro-inflammatory environment. Further studies are needed to fully understand the mechanisms underlying the cardiovascular benefits of empagliflozin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATRA:

All-trans retinoic acid

CVD:

Cardiovascular disease

ICAM-1:

Intercellular adhesion molecule 1

SGLT2:

Sodium-glucose co-transporter-2

SI:

Shape index

T2DM:

Type 2 diabetes mellitus

TNFα:

Tumor necrosis factor α

VCAM-1:

Vascular cell adhesion molecule 1

References

  1. International Diabetes Federation (2017) IDF diabetes atlas, 8th edn. International Diabetes Federation, Brussels

    Google Scholar 

  2. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI, Simonson DC, Testa MA, Weiss R (2015) Type 2 diabetes mellitus. Nat Rev Dis Primers 1:15019. https://doi.org/10.1038/nrdp.2015.19

    Article  PubMed  Google Scholar 

  3. Farkouh ME, Domanski M, Sleeper LA, Siami FS, Dangas G, Mack M, Yang M, Cohen DJ, Rosenberg Y, Solomon SD, Desai AS, Gersh BJ, Magnuson EA, Lansky A, Boineau R, Weinberger J, Ramanathan K, Sousa JE, Rankin J, Bhargava B, Buse J, Hueb W, Smith CR, Muratov V, Bansilal S, King S 3rd, Bertrand M, Fuster V, Investigators FT (2012) Strategies for multivessel revascularization in patients with diabetes. N Engl J Med 367:2375–2384. https://doi.org/10.1056/NEJMoa1211585

    Article  CAS  PubMed  Google Scholar 

  4. Kappetein AP, Head SJ, Morice MC, Banning AP, Serruys PW, Mohr FW, Dawkins KD, Mack MJ, Investigators S (2013) Treatment of complex coronary artery disease in patients with diabetes: 5-year results comparing outcomes of bypass surgery and percutaneous coronary intervention in the SYNTAX trial. Eur J Cardiothorac Surg 43:1006–1013. https://doi.org/10.1093/ejcts/ezt017

    Article  PubMed  Google Scholar 

  5. Moreyra AE, Deng Y, Wilson AC, Cosgrove NM, Kostis WJ, Kostis JB, Group Ms (2013) Incidence and trends of heart failure admissions after coronary artery bypass grafting surgery. Eur J Heart Fail 15:46–53. https://doi.org/10.1093/eurjhf/hfs154

    Article  PubMed  Google Scholar 

  6. Emerging Risk Factors Collaboration, Di Angelantonio E, Kaptoge S, Wormser D, Willeit P, Butterworth AS, Bansal N, O’Keeffe LM, Gao P, Wood AM, Burgess S, Freitag DF, Pennells L, Peters SA, Hart CL, Haheim LL, Gillum RF, Nordestgaard BG, Psaty BM, Yeap BB, Knuiman MW, Nietert PJ, Kauhanen J, Salonen JT, Kuller LH, Simons LA, van der Schouw YT, Barrett-Connor E, Selmer R, Crespo CJ, Rodriguez B, Verschuren WM, Salomaa V, Svardsudd K, van der Harst P, Bjorkelund C, Wilhelmsen L, Wallace RB, Brenner H, Amouyel P, Barr EL, Iso H, Onat A, Trevisan M, D’Agostino RB Sr, Cooper C, Kavousi M, Welin L, Roussel R, Hu FB, Sato S, Davidson KW, Howard BV, Leening MJ, Rosengren A, Dorr M, Deeg DJ, Kiechl S, Stehouwer CD, Nissinen A, Giampaoli S, Donfrancesco C, Kromhout D, Price JF, Peters A, Meade TW, Casiglia E, Lawlor DA, Gallacher J, Nagel D, Franco OH, Assmann G, Dagenais GR, Jukema JW, Sundstrom J, Woodward M, Brunner EJ, Khaw KT, Wareham NJ, Whitsel EA, Njolstad I, Hedblad B, Wassertheil-Smoller S, Engstrom G, Rosamond WD, Selvin E, Sattar N, Thompson SG, Danesh J (2015) Association of cardiometabolic multimorbidity with mortality. JAMA 314:52–60. https://doi.org/10.1001/jama.2015.7008

    Article  CAS  Google Scholar 

  7. U.S. Food and Drug Administration Center for Drug Evaluation and Research (2008) Guidance for industry. Diabetes mellitus—evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. In: Services USDoHaH (ed) U.S. Department of Health and Human Services, Silver Spring, MD, USA

  8. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128. https://doi.org/10.1056/NEJMoa1504720

    Article  CAS  PubMed  Google Scholar 

  9. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen OE, Woerle HJ, Broedl UC, Zinman B, Investigators E-RO (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375:323–334. https://doi.org/10.1056/NEJMoa1515920

    Article  CAS  PubMed  Google Scholar 

  10. Lopaschuk GD, Verma S (2016) Empagliflozin’s fuel hypothesis: not so soon. Cell Metab 24:200–202. https://doi.org/10.1016/j.cmet.2016.07.018

    Article  CAS  PubMed  Google Scholar 

  11. Sattar N, McLaren J, Kristensen SL, Preiss D, McMurray JJ (2016) SGLT2 Inhibition and cardiovascular events: why did EMPA-REG outcomes surprise and what were the likely mechanisms? Diabetologia 59:1333–1339. https://doi.org/10.1007/s00125-016-3956-x

    Article  PubMed  PubMed Central  Google Scholar 

  12. Verma S, Garg A, Yan AT, Gupta AK, Al-Omran M, Sabongui A, Teoh H, Mazer CD, Connelly KA (2016) Effect of empagliflozin on left ventricular mass and diastolic function in individuals with diabetes: an important clue to the EMPA-REG OUTCOME trial? Diabetes Care 39:e212–e213. https://doi.org/10.2337/dc16-1312

    Article  PubMed  Google Scholar 

  13. Verma S, McMurray JJV, Cherney DZI (2017) The metabolodiuretic promise of sodium-dependent glucose cotransporter 2 inhibition: the search for the sweet spot in heart failure. JAMA Cardiol. https://doi.org/10.1001/jamacardio.2017.1891

    Article  PubMed  PubMed Central  Google Scholar 

  14. Butler J, Hamo CE, Filippatos G, Pocock SJ, Bernstein RA, Brueckmann M, Cheung AK, George JT, Green JB, Januzzi JL, Kaul S, Lam CSP, Lip GYH, Marx N, McCullough PA, Mehta CR, Ponikowski P, Rosenstock J, Sattar N, Salsali A, Scirica BM, Shah SJ, Tsutsui H, Verma S, Wanner C, Woerle HJ, Zannad F, Anker SD, Program ET (2017) The potential role and rationale for treatment of heart failure with sodium-glucose co-transporter 2 inhibitors. Eur J Heart Fail 19:1390–1400. https://doi.org/10.1002/ejhf.933

    Article  CAS  PubMed  Google Scholar 

  15. Shi X, Verma S, Yun J, Brand-Arzamendi K, Singh KK, Liu X, Garg A, Quan A, Wen XY (2017) Effect of empagliflozin on cardiac biomarkers in a zebrafish model of heart failure: clues to the EMPA-REG OUTCOME trial? Mol Cell Biochem 433:97–102. https://doi.org/10.1007/s11010-017-3018-9

    Article  CAS  PubMed  Google Scholar 

  16. Nieuwdorp M, van Haeften TW, Gouverneur MC, Mooij HL, van Lieshout MH, Levi M, Meijers JC, Holleman F, Hoekstra JB, Vink H, Kastelein JJ, Stroes ES (2006) Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 55:480–486

    Article  CAS  PubMed  Google Scholar 

  17. Cooper S, McDonald K, Burkat D, Leask RL (2017) Stenosis hemodynamics disrupt the endothelial cell glycocalyx by MMP activity creating a proinflammatory environment. Ann Biomed Eng. https://doi.org/10.1007/s10439-017-1846-0

    Article  PubMed  Google Scholar 

  18. Rao G, Ding HG, Huang W, Le D, Maxhimer JB, Oosterhof A, van Kuppevelt T, Lum H, Lewis EJ, Reddy V, Prinz RA, Xu X (2011) Reactive oxygen species mediate high glucose-induced heparanase-1 production and heparan sulphate proteoglycan degradation in human and rat endothelial cells: a potential role in the pathogenesis of atherosclerosis. Diabetologia 54:1527–1538. https://doi.org/10.1007/s00125-011-2110-z

    Article  CAS  PubMed  Google Scholar 

  19. Diabetes Canada Clinical Practice Guidelines Expert Committee, Lipscombe L, Booth G, Butalia S, Dasgupta K, Eurich D, Goldenberg R, Khan N, MacCallum L, Shah B, Simpson S (2018) Prevention and management of diabetes in Canada: pharmacologic glycemic management of type 2 diabetes in adults. Can J Diabetes 42:S88–S103 (in press)

    Article  Google Scholar 

  20. American Diabetes Association (2018) 8. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2018. Diabetes Care 41:S73–S85. https://doi.org/10.2337/dc18-S008

    Article  Google Scholar 

  21. Farcas MA, Rouleau L, Fraser R, Leask RL (2009) The development of 3-D, in vitro, endothelial culture models for the study of coronary artery disease. Biomed Eng Online 8:30. https://doi.org/10.1186/1475-925x-8-30

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nerem RM, Levesque MJ, Cornhill JF (1981) Vascular endothelial morphology as an indicator of the pattern of blood flow. J Biomech Eng 103:172–176

    Article  CAS  PubMed  Google Scholar 

  23. Brown DC, Tsuji H, Larson RS (1999) All-trans retinoic acid regulates adhesion mechanism and transmigration of the acute promyelocytic leukaemia cell line NB-4 under physiologic flow. Br J Haematol 107:86–98

    Article  CAS  PubMed  Google Scholar 

  24. Zhang C (2008) The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol 103:398–406. https://doi.org/10.1007/s00395-008-0733-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rouleau L, Copland IB, Tardif JC, Mongrain R, Leask RL (2010) Neutrophil adhesion on endothelial cells in a novel asymmetric stenosis model: effect of wall shear stress gradients. Ann Biomed Eng 38:2791–2804. https://doi.org/10.1007/s10439-010-0032-4

    Article  PubMed  PubMed Central  Google Scholar 

  26. McDonald KK, Cooper S, Danielzak L, Leask RL (2016) Glycocalyx degradation induces a proinflammatory phenotype and increased leukocyte adhesion in cultured endothelial cells under flow. PLoS ONE 11:e0167576. https://doi.org/10.1371/journal.pone.0167576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM (2003) Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 93:e136–e142. https://doi.org/10.1161/01.res.0000101744.47866.d5

    Article  CAS  PubMed  Google Scholar 

  28. Verma S, Mazer CD, Al-Omran M, Inzucchi SE, Fitchett D, Hehnke U, George JT, Zinman B (2018) Cardiovascular outcomes and safety of empagliflozin in patients with type 2 diabetes mellitus and peripheral artery disease: a subanalysis of EMPA-REG OUTCOME. Circulation 137:405–407. https://doi.org/10.1161/CIRCULATIONAHA.117.032031

    Article  PubMed  Google Scholar 

  29. Verma S, Mazer CD, Fitchett D, Inzucchi SE, Pfarr E, George JT, Zinman B (2018) Empagliflozin reduces cardiovascular events, mortality and renal events in participants with type 2 diabetes after coronary artery bypass graft surgery: subanalysis of the EMPA-REG OUTCOME(R) randomised trial. Diabetologia 1:1. https://doi.org/10.1007/s00125-018-4644-9

    Article  CAS  Google Scholar 

  30. Tarbell JM, Cancel LM (2016) The glycocalyx and its significance in human medicine. J Intern Med 280:97–113. https://doi.org/10.1111/joim.12465

    Article  CAS  PubMed  Google Scholar 

  31. Alphonsus CS, Rodseth RN (2014) The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia 69:777–784. https://doi.org/10.1111/anae.12661

    Article  CAS  PubMed  Google Scholar 

  32. Kozma EM, Olczyk K, Glowacki A, Komosinska K, Sonecki P, Najmiec T, Jazwiec M (1996) Glycosaminoglycans of human serum and their alterations in diabetes mellitus. Acta Biochim Pol 43:567–574

    CAS  PubMed  Google Scholar 

  33. Broekhuizen LN, Lemkes BA, Mooij HL, Meuwese MC, Verberne H, Holleman F, Schlingemann RO, Nieuwdorp M, Stroes ES, Vink H (2010) Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia 53:2646–2655. https://doi.org/10.1007/s00125-010-1910-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liao YJ, Ueno M, Nakagawa T, Huang C, Kanenishi K, Onodera M, Sakamoto H (2005) Oxidative damage in cerebral vessels of diabetic db/db mice. Diabetes Metab Res Rev 21:554–559. https://doi.org/10.1002/dmrr.579

    Article  CAS  PubMed  Google Scholar 

  35. Targosz-Korecka M, Jaglarz M, Malek-Zietek KE, Gregorius A, Zakrzewska A, Sitek B, Rajfur Z, Chlopicki S, Szymonski M (2017) AFM-based detection of glycocalyx degradation and endothelial stiffening in the db/db mouse model of diabetes. Sci Rep 7:15951. https://doi.org/10.1038/s41598-017-16179-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van den Berg BM, Spaan JA, Rolf TM, Vink H (2006) Atherogenic region and diet diminish glycocalyx dimension and increase intima-to-media ratios at murine carotid artery bifurcation. Am J Physiol Heart Circ Physiol 290:H915–H920. https://doi.org/10.1152/ajpheart.00051.2005

    Article  CAS  PubMed  Google Scholar 

  37. Cancel LM, Ebong EE, Mensah S, Hirschberg C, Tarbell JM (2016) Endothelial glycocalyx, apoptosis and inflammation in an atherosclerotic mouse model. Atherosclerosis 252:136–146. https://doi.org/10.1016/j.atherosclerosis.2016.07.930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mulivor AW, Lipowsky HH (2009) Inhibition of glycan shedding and leukocyte-endothelial adhesion in postcapillary venules by suppression of matrixmetalloprotease activity with doxycycline. Microcirculation 16:657–666. https://doi.org/10.3109/10739680903133714

    Article  CAS  PubMed  Google Scholar 

  39. Pahakis MY, Kosky JR, Dull RO, Tarbell JM (2007) The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem Biophys Res Commun 355:228–233. https://doi.org/10.1016/j.bbrc.2007.01.137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nikmanesh M, Shi ZD, Tarbell JM (2012) Heparan sulfate proteoglycan mediates shear stress-induced endothelial gene expression in mouse embryonic stem cell-derived endothelial cells. Biotechnol Bioeng 109:583–594. https://doi.org/10.1002/bit.23302

    Article  CAS  PubMed  Google Scholar 

  41. van den Berg BM, Spaan JA, Vink H (2009) Impaired glycocalyx barrier properties contribute to enhanced intimal low-density lipoprotein accumulation at the carotid artery bifurcation in mice. Pflugers Arch 457:1199–1206. https://doi.org/10.1007/s00424-008-0590-6

    Article  CAS  PubMed  Google Scholar 

  42. van den Berg BM, Vink H, Spaan JA (2003) The endothelial glycocalyx protects against myocardial edema. Circ Res 92:592–594. https://doi.org/10.1161/01.RES.0000065917.53950.75

    Article  CAS  PubMed  Google Scholar 

  43. Hallow KM, Helmlinger G, Greasley PJ, McMurray JJ, Boulton DW (2018) Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab 20:479–487

    Article  CAS  PubMed  Google Scholar 

  44. Sumagin R, Lamkin-Kennard KA, Sarelius IH (2009) A separate role for ICAM-1 and fluid shear in regulating leukocyte interactions with straight regions of venular wall and venular convergences. Microcirculation 16:508–520. https://doi.org/10.1080/10739680902942271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rossi J, Rouleau L, Emmott A, Tardif JC, Leask RL (2010) Laminar shear stress prevents simvastatin-induced adhesion molecule expression in cytokine activated endothelial cells. Eur J Pharmacol 649:268–276. https://doi.org/10.1016/j.ejphar.2010.09.016

    Article  CAS  PubMed  Google Scholar 

  46. Mannino RG, Myers DR, Ahn B, Wang Y, Margo R, Gole H, Lin AS, Guldberg RE, Giddens DP, Timmins LH, Lam WA (2015) Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions. Sci Rep 5:12401. https://doi.org/10.1038/srep12401

    Article  PubMed  PubMed Central  Google Scholar 

  47. Arisaka T, Mitsumata M, Kawasumi M, Tohjima T, Hirose S, Yoshida Y (1995) Effects of shear stress on glycosaminoglycan synthesis in vascular endothelial cells. Ann N Y Acad Sci 748:543–554

    Article  CAS  PubMed  Google Scholar 

  48. Dewey JCF, Bussolari SR, Gimbrone JMA, Davies PF (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103:177–185. https://doi.org/10.1115/1.3138276

    Article  PubMed  Google Scholar 

  49. Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75:519–560. https://doi.org/10.1152/physrev.1995.75.3.519

    Article  CAS  PubMed  Google Scholar 

  50. Nagel T, Resnick N, Atkinson WJ, Dewey CF Jr, Gimbrone MA Jr (1994) Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J Clin Investig 94:885–891. https://doi.org/10.1172/JCI117410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schwartz CJ, Valente AJ, Sprague EA, Kelley JL, Nerem RM (1991) The pathogenesis of atherosclerosis: an overview. Clin Cardiol 14:1–16. https://doi.org/10.1002/clc.4960141302

    Article  Google Scholar 

  52. Ebong EE, Lopez-Quintero SV, Rizzo V, Spray DC, Tarbell JM (2014) Shear-induced endothelial NOS activation and remodeling via heparan sulfate, glypican-1, and syndecan-1. Integr Biol (Camb) 6:338–347. https://doi.org/10.1039/c3ib40199e

    Article  CAS  Google Scholar 

  53. Thi MM, Tarbell JM, Weinbaum S, Spray DC (2004) The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model. Proc Natl Acad Sci USA 101:16483–16488. https://doi.org/10.1073/pnas.0407474101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yao Y, Rabodzey A, Dewey CF Jr (2007) Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am J Physiol Heart Circ Physiol 293:H1023–H1030. https://doi.org/10.1152/ajpheart.00162.2007

    Article  CAS  PubMed  Google Scholar 

  55. Falanga A, Marchetti M, Giovanelli S, Barbui T (1996) All-trans-retinoic acid counteracts endothelial cell procoagulant activity induced by a human promyelocytic leukemia-derived cell line (NB4). Blood 87:613

    Article  CAS  PubMed  Google Scholar 

  56. Khanna-Gupta A, Kolibaba K, Zibello TA, Berliner N (1994) NB4 cells show bilineage potential and an aberrant pattern of neutrophil secondary granule protein gene expression. Blood 84:294

    Article  CAS  PubMed  Google Scholar 

  57. Marchetti M, Falanga A, Giovanelli S, Oldani E, Barbui T (1996) All-trans-retinoic acid increases adhesion to endothelium of the human promyelocytic leukaemia cell line NB4. Br J Haematol 93:360–366. https://doi.org/10.1046/j.1365-2141.1996.4911029.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by NSERC 261938-13 RL. SV was the Canada Research Chair in Atherosclerosis at the University of Toronto.

Author information

Authors and Affiliations

Authors

Contributions

SV and RLL conceived the study. SC and RLL designed the study. MAC and SC acquired the data and SC analyzed the data. SC, HT, SV and RLL interpreted the analyses. SC drafted the manuscript. All authors participated in revising the manuscript and approved the final version to be published. RLL is the guarantor of this work.

Corresponding author

Correspondence to Richard L. Leask.

Ethics declarations

Conflict of interest

Hwee Teoh reports receiving honorarium from Boehringer Ingelheim. Subodh Verma holds a Tier 1 Canada Research Chair in Cardiovascular Surgery; and reports receiving research grants and/or speaking honoraria from Amgen, AstraZeneca, Bayer Healthcare, Boehringer Ingelheim, Bristol-Myers Squibb, Eli Lilly, Janssen, Merck, Novartis, Novo Nordisk and Sanofi. He is also the President of the Canadian Medical and Surgical Knowledge Translation Research Group, a federally incorporated not-for-profit physician organization.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cooper, S., Teoh, H., Campeau, M.A. et al. Empagliflozin restores the integrity of the endothelial glycocalyx in vitro. Mol Cell Biochem 459, 121–130 (2019). https://doi.org/10.1007/s11010-019-03555-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03555-2

Keywords

Navigation