Skip to main content

Advertisement

Log in

Heat shock protein 60 negatively regulates the biological functions of ubiquitin-like protein MNSFβ in macrophages

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Monoclonal nonspecific suppressor factor β (MNSFβ) is a ubiquitously expressed ubiquitin-like protein known to be involved in various biological functions. Previous studies have demonstrated that MNSFβ covalently modify its target proteins including Bcl-G, a proapoptotic protein. In this study, we purified a 65 kDa MNSFβ adduct from mouse liver lysates by sequential chromatography on DEAE and glutathione S-transferase (GST)-fusioned MNSFβ immobilized on glutathione-Sepharose beads in the presence of ATP. MALDI-TOF mass spectrometry fingerprinting revealed that this MNSFβ adduct consists of an 8.5 kDa MNSFβ and heat shock protein 60 (HSP60), a mitochondrial protein involved in protein folding. Fingerprinting analysis of the MNSFβ adduct demonstrates that MNSFβ conjugates to HSP60 with a linkage between the C-terminal Gly74 and Lys481. HSP60 siRNA neutralized the inhibition of apoptosis by MNSFβ siRNA in LPS/IFNγ-stimulated Raw264.7, a murine macrophage cell line. HSP60 siRNA also down-regulated the enhancement of TNFα production by MNSFβ siRNA in LPS-stimulated Raw264.7 cells. Here, we firstly report that MNSFβ activity is negatively regulated by molecular chaperone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MNSF:

Monoclonal nonspecific suppressor factor

LPS:

Lipopolysaccharide

IFNγ:

Interferon γ

HSP60:

Heat shock protein 60

References

  1. Mahajan R, Delphin RC, Guan T (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88:97–107

    Article  CAS  PubMed  Google Scholar 

  2. Marx J (2005) SUMO wrestles its way to prominence in the cell. Science 307:36–839

    Article  Google Scholar 

  3. Jentsch S, McGrath JP, Varshavsky A (1987) The yeast DNA repair gene RAD6 encodes a ubiquitin conjugating enzyme. Nature 329:131–134

    Article  CAS  PubMed  Google Scholar 

  4. Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  CAS  PubMed  Google Scholar 

  5. Skowyra D, Koepp DM, Kamura T, Conrad MN, Conaway RC, Conaway JW, Elledge SJ, Harper JW (1999) Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. Science 284:662–665

    Article  CAS  PubMed  Google Scholar 

  6. Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178

    Article  CAS  PubMed  Google Scholar 

  7. Passmore LA, Barford D (2004) Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochem J 379:513–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakamura M, Tanigawa Y (2003) Characterization of ubiquitin-like polypeptide acceptor protein, a novel pro-apoptotic member of the Bcl2 family. Eur J Biochem 270:4052–4058

    Article  CAS  PubMed  Google Scholar 

  9. Nakamura M, Yamaguchi S (2006) The ubiquitin-like protein MNSFbeta regulates ERK-MAPK cascade. J Biol Chem 281:16861–16869

    Article  CAS  PubMed  Google Scholar 

  10. Nakagawa M, Watanabe N, Nakamura M (2013) Ubiquitin-like protein MNSFβ covalently binds to Bcl-G and enhances lipopolysaccharide/interferon γ-induced apoptosis in macrophages. FEBS J 280:1281–1293

    Article  CAS  PubMed  Google Scholar 

  11. Nakamura M, Shimosaki S (2009) The ubiquitin-like protein monoclonal nonspecific suppressor factor beta conjugates to endophilin II and regulates phagocytosis. FEBS J 276:6355–6363

    Article  CAS  PubMed  Google Scholar 

  12. Belles C, Kuhl A, Nosheny R, Carding SR (1999) Plasma membrane expression of heat shock protein 60 in vivo in response to infection. Infect Immun 67:4191–4200

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Feng H, Zeng Y, Whitesell L, Katsanis E (2001) Stressed apoptotic tumor cells express heat shock proteins and elicit tumor-specific immunity. Blood 97:505–3512

    Article  Google Scholar 

  14. Notsu K, Nakagawa M, Nakamura M (2016) Ubiquitin-like protein MNSFβ noncovalently binds to molecular chaperone HSPA8 and regulates osteoclastogenesis. Mol Cell Biochem 421:149–156

    Article  CAS  PubMed  Google Scholar 

  15. Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  16. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  CAS  PubMed  Google Scholar 

  17. Kaur I, Voss SD, Gupta RS, Schell K, Fisch P, Sondel PM (1993) Human peripheral gamma delta T cells recognize hsp60 molecules on Daudi Burkitt’s lymphoma cells. J Immunol 150:2046–2055

    CAS  PubMed  Google Scholar 

  18. Soltys BJ, Gupta RS (1997) Cell surface localization of the 60 kDa heat shock chaperonin protein (hsp60) in mammalian cells. Cell Biol Int 21:315–320

    Article  CAS  PubMed  Google Scholar 

  19. Laad AD, Thomas ML, Fakih AR, Chiplunkar S (1999) Human gamma delta T cells recognize heat shock protein-60 on oral tumor cells. Int J Cancer 80:709–714

    Article  CAS  PubMed  Google Scholar 

  20. Shin BK, Wang H, Yim AM, Le Naour F, Brichory F, Jang JH, Zhao R, Puravs E, Tra J, Michael CD, Misek DE, Hanash SM (2003) Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 278:607–7616

    Google Scholar 

  21. Barazi HO, Zhou L, Templeton NS, Krutzsch HC, Roberts DD (2002) Identification of heat shock protein 60 as a molecular mediator of alpha 3 beta 1 integrin activation. Cancer Res 62:1541–1548

    CAS  PubMed  Google Scholar 

  22. Xu Q (2003) Infections, heat shock proteins, and atherosclerosis. Curr Opin Cardiol 18:245–252

    Article  PubMed  Google Scholar 

  23. Lewthwaite J, Owen N, Coates A, Henderson B, Steptoe A (2002) Circulating human heat shock protein 60 in the plasma of British civil servants: relationship to physiological and psychosocial stress. Circulation 106:196–201

    Article  CAS  PubMed  Google Scholar 

  24. Johnson GB, Brunn GJ, Platt JL (2003) Cell surface localization of the 60 kDa heat shock chaperonin protein (hsp60) in mammalian cells. Crit Rev Immunol 23:15–44

    Article  CAS  PubMed  Google Scholar 

  25. Flohe SB, Bruggemann J, Lendemans S, Nikulina M, Meierhoff G, Flohe S, Kolb H (2003) Human heat shock protein 60 induces maturation of dendritic cells versus a Th1-promoting phenotype. J Immunol 170:2340–2348

    Article  CAS  PubMed  Google Scholar 

  26. Nakamura M, Xavier RM, Tsunematsu T, Tanigawa Y (1995) Molecular cloning and characterization of a cDNA encoding monoclonal nonspecific suppressor factor. Proc Natl Acad Sci USA 92:3463–3467

    Google Scholar 

  27. Ghosh JC, Dohi T, Kang BH, Altieri DC (2008) Hsp60 regulation of tumor cell apoptosis. J Biol Chem 283:5188–5514

    Article  CAS  PubMed  Google Scholar 

  28. Watanabe J, Nakagawa M, Watanabe N, Nakamura M (2013) Ubiquitin-like protein MNSFβ covalently binds to Bcl-G and enhances lipopolysaccharide/interferon γ-induced apoptosis in macrophages. FEBS J 280:1281–1293

    Article  CAS  PubMed  Google Scholar 

  29. Kol A, Lichtman AH, Finberg RW, Libby P, Kurt-Jones EA (2000) Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol 164:13–17

    Article  CAS  PubMed  Google Scholar 

  30. Chen W, Syldath U, Bellmann K, Burkart V, Kolb H (1999) Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol 162:3212–3219

    Google Scholar 

  31. Bethke K, Staib F, Distler M, Schmitt U, Jonuleit H, Enk AH, Galle PR, Heike M (2002) Different efficiency of heat shock proteins (HSP) to activate human monocytes and dendritic cells: superiority of HSP60. J Immunol 169:1641–6148

    Article  Google Scholar 

  32. Kol A, Bourcier T, Lichtman AH, Libby P (1999) Chlamydial and human heat shock protein 60 s activate human vascular endothelium, smooth muscle cells, and macrophages. J Clin Invest 103:571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Hacker H, Wagner H (2001) Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276:31332–31339

    Article  CAS  PubMed  Google Scholar 

  34. Ohashi K, Burkart V, Flohe S, Kolb H (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164:558–561

    Article  CAS  PubMed  Google Scholar 

  35. Bulut Y, Faure E, Thomas L, Karahashi H, Michelsen KS, Equils O, Morrison SG, Morrison RP, Arditi M (2002) Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol 168:1435–1440

    Article  CAS  PubMed  Google Scholar 

  36. Jin L, Pahuja KB, Wickliffe KE, Gorur A, Baumgärtel C, Schekman R, Rape M (2012) Ubiquitin-dependent regulation of COPII coat size and function. Nature 482:495–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cappello F, Conway de Macario E, Marasà L, Zummo G, Macario AJ (2008) Hsp60 expression, new locations, functions and perspectives for cancer diagnosis and therapy. Cancer Biol Ther 7:801–809

    Article  CAS  PubMed  Google Scholar 

  38. Kalderon B, Kogan G, Bubis E, Pines O (2015) Cytosolic Hsp60 can modulate proteasome activity in yeast. J Biol Chem 290:3542–3551

    Article  CAS  PubMed  Google Scholar 

  39. Chun JN, Choi B, Lee KW, Lee DJ, Kang DH, Lee JY, Song IS, Kim HI, Lee SH, Kim HS, Lee NK, Lee SY, Lee KJ, Kim J, Kang SW (2010) Cytosolic Hsp60 is involved in the NF-kappaB-dependent survival of cancer cells via IKK regulation. PLoS ONE 5:e9422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kirchhoff SR, Gupta S, Knowlton AA (2002) Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 105:2899–2904

    Article  CAS  PubMed  Google Scholar 

  41. Xanthoudakis S, Roy S, Rasper D, Hennessey T, Aubin Y, Cassady R, Tawa P, Ruel R, Rosen A, Nicholson DW (1999) Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. EMBO J 18:2049–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chahine MN, Deniset J, Dibrov E, Hirono S, Blackwood DP, Austria JA, Pierce GN (2011) Oxidized LDL promotes the mitogenic actions of Chlamydia pneumoniae in vascular smooth muscle cells. Cardiovasc Res 92:476–483

    Article  CAS  PubMed  Google Scholar 

  43. Deniset JF, Hedley TE, Hlaváčková M, Chahine MN, Dibrov E, O’Hara K, Maddaford GG, Nelson D, Maddaford TG, Fandrich R, Kardami E, Pierce GN (2018) Heat shock protein 60 involvement in vascular smooth muscle cell proliferation. Cell Signal 47:44–51

    Article  CAS  PubMed  Google Scholar 

  44. Habich C, Baumgart K, Kolb H, Burkart V (2002) The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins. J Immunol 168:569–576

    Article  CAS  PubMed  Google Scholar 

  45. Nakamura M, Ogawa H, Tsunematsu T (1986) Isolation and characterization of a monoclonal nonspecific suppressor factor (MNSF) produced by a T cell hybridoma. J Immunol 136:904–2909

    Google Scholar 

  46. Habich C, Kempe K, Burkart V, Van Der Zee R, Lillicrap M, Gaston H, Kolb H (2004) Identification of the heat shock protein 60 epitope involved in receptor binding on macrophages. FEBS Lett 568:65–69

    Article  CAS  PubMed  Google Scholar 

  47. Gu Y, He Y, Zhang X, Shi Y, Yang Q, Yu L, Sun Z, Zhang H, Wang J, Gao X, Wang J (2015) Deficiency of monoclonal non-specific suppressor factor beta (MNSFB) promotes pregnancy loss in mice. Mol Reprod Dev 82:475–488

    Article  CAS  PubMed  Google Scholar 

  48. Berndsen CE, Wolberger C (2014) New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol 21:301–307

    Article  CAS  PubMed  Google Scholar 

  49. Sarikas A, Hartmann T, Pan ZQ (2010) The cullin protein family. Genome Biol 12:220

    Article  CAS  Google Scholar 

  50. Zimmerman ES, Schulman BA, Zheng N (2010) Structural assembly of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol 20:714–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant-in-aid for scientific research (C) to M.N. (17K07335) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morihiko Nakamura.

Ethics declarations

Conflict of interest

All authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, M., Notsu, K. & Nakagawa, M. Heat shock protein 60 negatively regulates the biological functions of ubiquitin-like protein MNSFβ in macrophages. Mol Cell Biochem 456, 29–39 (2019). https://doi.org/10.1007/s11010-018-3487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3487-5

Keywords

Navigation