Skip to main content

Advertisement

Log in

Concomitance of downregulated active caspase-3 and upregulated X-chromosome linked inhibitor of apoptosis protein as a sensitive diagnostic approach for breast cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We aimed to explore the efficacy of active caspase-3 and X-chromosome linked inhibitor of apoptosis protein (XIAP) as diagnostic markers for breast cancer. Furthermore, we examined the relationship between the examined parameters and clinicopathological factors. The current study involved 96 patients diagnosed with breast cancer and 40 patients had benign breast diseases. The expression of active caspase-3 was analyzed by both ELISA and Western blot, whereas the expression of XIAP was determined by ELISA in cell lysates. Active caspase-3 was significantly downregulated, while XIAP was markedly upregulated in patients with breast cancer in comparison to benign group. A significant negative correlation was observed between active caspase-3 and XIAP in breast cancer patients. Low active caspase-3 expression was associated with high grade, whereas, the high XIAP level was correlated with poorly differentiated tumors and late tumor stages. The sensitivity and specificity were 73.96% and 80.0% for active caspase-3, and, 70.83% and 82.5% for XIAP. A combination of active caspase-3 and XIAP provided a promising sensitivity of 88.54% and specificity of 90.0%. Our data indicate that active caspase-3 and XIAP could be substantial diagnostic markers for breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424

    Article  CAS  Google Scholar 

  2. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  CAS  Google Scholar 

  3. Atkinson EA, Barry M, Darmon AJ, Shostak I, Turner PC, Moyer RW, Bleackley RC (1998) Cytotoxic T lymphocyte-assisted suicide. Caspase 3 activation is primarily the result of the direct action of granzyme B. J Biol Chem 273:21261–21266

    Article  CAS  Google Scholar 

  4. Stennicke HR, Jürgensmeier JM, Shin H, Deveraux Q, Wolf BB, Yang X, Zhou Q, Ellerby HM, Ellerby LM, Bredesen D, Green DR, Reed JC, Froelich CJ, Salvesen GS (1998) Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem 273:27084–27090

    Article  CAS  Google Scholar 

  5. Han Z, Hendrickson EA, Bremner TA, Wyche JH (1997) A sequential two-step mechanism for the production of the mature p17:p12 form of caspase-3 in vitro. J Biol Chem 272:13432–13436

    Article  CAS  Google Scholar 

  6. Devarajan E, Sahin AA, Chen JS, Krishnamurthy RR, Aggarwal N, Brun AM, Sapino A, Zhang F, Sharma D, Yang XH, Tora AD, Mehta K (2002) Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene 21(57):8843–8851

    Article  CAS  Google Scholar 

  7. Nassar A, Lawson D, Cotsonis G, Cohen C (2008) Survivin and caspase-3 expression in breast cancer: correlation with prognostic parameters, proliferation, angiogenesis, and outcome. Appl Immunohistochem Mol Morphol 16(2):113–120

    Article  CAS  Google Scholar 

  8. Vakkala M, Pääkkö P, Soini Y (1999) Expression of caspases 3, 6 and 8 is increased in parallel with apoptosis and histological aggressiveness of the breast lesion. Br J Cancer 81(4):592–599

    Article  CAS  Google Scholar 

  9. Nakopoulou L, Alexandrou P, Stefanaki K, Panayotopoulou E, Lazaris AC, Davaris PS (2001) Immunohistochemical expression of caspase-3 as an adverse indicator of the clinical outcome in human breast cancer. Pathobiology 69(5):266–273

    Article  CAS  Google Scholar 

  10. O’Donovan N, Crown J, Stunell H, Hill AD, McDermott E, O’Higgins N, Duffy MJ (2003) Caspase 3 in breast cancer. Clin Cancer Res 9(2):738–742

    PubMed  Google Scholar 

  11. Blázquez S, Sirvent JJ, Olona M, Aguilar C, Pelegri A, Garcia JF, Palacios J (2006) Caspase-3 and caspase-6 in ductal breast carcinoma: a descriptive study. Histol Histopathol 21(12):1321–1329

    PubMed  Google Scholar 

  12. Grigoriev MY, Pozharissky KM, Hanson KP, Imyanitov EN, Zhivotovsky B (2002) Expression of caspase-3 and – 7 does not correlate with the extent of apoptosis in primary breast carcinomas. Cell Cycle 1(5):337–342

    Article  CAS  Google Scholar 

  13. Deveraux QL, Reed JC (1999) IAP family proteins-suppressors of apoptosis. Genes Dev 13:239–252

    Article  CAS  Google Scholar 

  14. Budhidarmo R, Day CL (2015) IAPs: Modular regulators of cell signalling. Semin Cell Dev Biol 39:80–90

    Article  CAS  Google Scholar 

  15. Scott FL, Denault JB, Riedl SJ, Shin H, Renatus M, Salvesen GS (2005) XIAP inhibits caspase-3 and – 7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J 24:645–655

    Article  CAS  Google Scholar 

  16. Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ, Li P, Srinivasula SM, Alnemri ES, Fairman R, Shi Y (2003) Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11:519–527

    Article  CAS  Google Scholar 

  17. Suzuki Y, Nakabayashi Y, Takahashi R (2001) Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci 98:8662–8667

    Article  CAS  Google Scholar 

  18. Morizane Y, Honda R, Fukami K, Yasuda H (2005) X-linked inhibitor of apoptosis functions as ubiquitin ligase toward mature caspase-9 and cytosolic Smac/DIABLO. J Biochem 137:125–132

    Article  CAS  Google Scholar 

  19. Obexer P, Ausserlechner MJ (2014) X-linked inhibitor of apoptosis protein–a critical death resistance regulator and therapeutic target for personalized cancer therapy. Front Oncol 4:197

    Article  Google Scholar 

  20. Jaffer S, Orta L, Sunkara S, Sabo E, Burstein DE (2007) Immunohistochemical detection of antiapoptotic protein X-linked inhibitor of apoptosis in mammary carcinoma. Hum Pathol 38(6):864–870

    Article  CAS  Google Scholar 

  21. Zhang Y, Zhu J, Tang Y, Li F, Zhou H, Peng B, Zhou C, Fu R (2011) X-linked inhibitor of apoptosis positive nuclear labeling: a new independent prognostic biomarker of breast invasive ductal carcinoma. Diagn Pathol 6:49

    Article  Google Scholar 

  22. Wang J, Liu Y, Ji R, Gu Q, Zhao X, Liu Y, Sun B (2010) Prognostic value of the X-linked inhibitor of apoptosis protein for invasive ductal breast cancer with triple-negative phenotype. Hum Pathol 41(8):1186–1195

    Article  CAS  Google Scholar 

  23. Hinnis AR, Luckett JC, Walker RA (2007) Survivin is an independent predictor of short-term survival in poor prognostic breast cancer patients. Br J Cancer 96(4):639–645

    Article  CAS  Google Scholar 

  24. Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A (eds) (2010) Breast. In: AJCC Cancer Staging Manual, 7th edn. Springer, New York, pp 345–377

  25. Tavassoli FA, Devilee P (2003) World Health Organization classification of tumours. In: Pathology and genetics, tumours of the breast and female genital organs. IARC Press, Lyon, France, pp 19–23

    Google Scholar 

  26. Zohny SF, Baothman OA, El-Shinawi M, Al-Malki AL, Zamzami MA, Choudhry H (2017) The KIP/CIP family members p21Waf1/Cip1 and p57Kip2 as diagnostic markers for breast cancer. Cancer Biomark 18(4):413–423

    Article  CAS  Google Scholar 

  27. Bradford NM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  28. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning. A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 42–59

    Google Scholar 

  29. Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411(6835):342–348

    Article  CAS  Google Scholar 

  30. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  Google Scholar 

  31. Chung C (2018) Restoring the switch for cancer cell death: targeting the apoptosis signaling pathway. Am J Health Syst Pharm 75(13):945–952

    Article  CAS  Google Scholar 

  32. Moll UM, Zaika A (2001) Nuclear and mitochondrial apoptotic pathways of p53. FEBS Lett 493(2–3):65–69

    Article  CAS  Google Scholar 

  33. Ding HF, Lin YL, McGill G, Juo P, Zhu H, Blenis J, Yuan J, Fisher DE (2000) Essential role for caspase-8 in transcription-independent apoptosis triggered by p53. J Biol Chem 275(49):38905–38911

    Article  CAS  Google Scholar 

  34. Zhang Y, Wang Y, Gao W, Zhang R, Han X, Jia M, Guan W (2006) Transfer of siRNA against XIAP induces apoptosis and reduces tumor cells growth potential in human breast cancer in vitro and in vivo. Breast Cancer Res Treat 96(3):267–277

    Article  CAS  Google Scholar 

  35. Yang L, Cao Z, Yan H, Wood WC (2003) Coexistence of high levels of apoptotic signaling and inhibitor of apoptosis in human tumor cells: implication for cancer specific therapy. Cancer Res 63(20):6815–6824

    CAS  PubMed  Google Scholar 

  36. Nestal de Moraes G, Delbue D, Silva KL, Robaina MC, Khongkow P, Gomes AR, Zona S, Crocamo S, Mencalha AL, Magalhães LM, Lam EW, Maia RC (2015) FOXM1 targets XIAP and survivin to modulate breast cancer survival and chemoresistance. Cell Signal 27(12):2496–2505

    Article  CAS  Google Scholar 

  37. Yang X, Stennicke HR, Wang B, Green DR, Jänicke RU, Srinivasan A, Seth P, Salvesen GS, Froelich CJ (1998) Granzyme B mimics apical caspases. Description of a unified pathway for trans-activation of executioner caspase-3 and – 7. J Biol Chem 273(51):34278–34283

    Article  CAS  Google Scholar 

  38. Yang XH, Edgerton S, Thor AD (2005) Reconstitution of caspase-3 sensitizes MCF-7 breast cancer cells to radiation therapy. Int J Oncol 26(6):1675–1680

    CAS  PubMed  Google Scholar 

  39. McManus DC, Lefebvre CA, Cherton-Horvat G, St-Jean M, Kandimalla ER, Agrawal S, Morris SJ, Durkin JP, Lacasse EC (2004) Loss of XIAP protein expression by RNAi and antisense approaches sensitizes cancer cells to functionally diverse chemotherapeutics. Oncogene 23(49):8105–8117

    Article  CAS  Google Scholar 

  40. Chaudhary AK, Yadav N, Bhat TA, O’Malley J, Kumar S, Chandra D (2016) A potential role of X-linked inhibitor of apoptosis protein in mitochondrial membrane permeabilization and its implication in cancer therapy. Drug Discov Today 21(1):38–47

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia, under Grant No. G-48-130-38. The authors, therefore, acknowledge with thanks DSR for technical and financial support. The authors thank the Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt, for providing the histopathological data of the patients included in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir F. Zohny.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical standards

All procedures were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and its later amendments.

Informed consent

Informed consent was obtained from all patients included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zohny, S.F., Zamzami, M.A. & El-Shinawi, M. Concomitance of downregulated active caspase-3 and upregulated X-chromosome linked inhibitor of apoptosis protein as a sensitive diagnostic approach for breast cancer. Mol Cell Biochem 455, 159–167 (2019). https://doi.org/10.1007/s11010-018-3479-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3479-5

Keywords

Navigation