Skip to main content
Log in

Effects of long-term dehydration on oxidative stress, apoptotic markers and neuropeptides in the gastric mucosa of the dromedary camel

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We investigated the effects of 20 days of dehydration and 20 days of dehydration followed by 72 h of rehydration on the gastric mucosa of the one-humped dromedary camel. The parameters addressed include biomarkers of oxidative stress, apoptosis, gastric epithelial histology, gastric neuropeptides, and their receptors. Nineteen clinically healthy, 4–5 year-old male dromedary camels were divided into three groups (five control camels, eight dehydrated for 20 days, six dehydrated for 20 days and then rehydrated for 72 h). Dehydration affected the oxidative stress biomarkers causing a significant increase in malondialdehyde, glutathione, nitric oxide, and catalase values compared with controls. Also the results revealed that dehydration caused different size cellular vacuoles and focal necrosis in the gastric mucosa. Rehydration for 72 h resulted in improvement in some parameters but was not enough to fully abolish the effect of dehydration. Dehydration caused significant increase in apoptotic markers; tumor necrosis factor α, caspases 8 and 3, BcL-x1 and TGFβ whereas caspase 9, p53, Beclin 1, and PARP1 showed no significant change between the three groups indicating that apoptosis was initiated by the extrinsic pathway. Also there were significant increases in prostaglandin E2 receptors and somatostatin in plasma and gastric epithelium homogenate, and a significant decrease in cholecystokinin–8 receptors. A significant decrease of hydrogen potassium ATPase enzyme activity was also observed. Pepsinogen C was not affected by dehydration. It is concluded that long-term dehydration induces oxidative stress and apoptosis in camel gastric mucosa and that camels adjust gastric functions during dehydration towards water economy. More than 72 h are needed before all the effects of dehydration are reversed by rehydration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schmidt-Nielsen B, Schmidt-Nielsen K, Houpt TR, Jarnum SA (1956) Water balance of the camel. Am J Physiol-Leg Content 185(1):185–194. https://doi.org/10.1152/ajplegacy.1956.185.1.185

    Article  CAS  Google Scholar 

  2. Macfarlane WV, Morris RJH, Howard B (1963) Turn-over and distribution of water in desert camels, sheep, cattle and kangaroos. Nature 197:270–271

    Article  Google Scholar 

  3. Curtis B, Phifer, David J, Prior (1985) Body hydration and haemolymph osmolality affect feeding and its neural correlate in the terrestrial gastropod, Umax maximus. J Exp Biol 118:405–421

    Google Scholar 

  4. Engelhardt W, Ruebsamen K (1979) Review of the digestive physiology of camelids. IFS INT. SYMP camels, Sudan, pp 307–319

    Google Scholar 

  5. Abdel-Magied EM, Taha AA (2003) Morphological, morphometric and histochemical characterization of the gastric mucosa of the camel (Camelus dromedarius). Anat Histol Embryol 32(1):42–47

    Article  CAS  PubMed  Google Scholar 

  6. Boron WF, Boulpaep EL (2016) Medical physiology. Gastric function. 3rd edn, Chap 42

  7. Ali MA et al (2007) Distribution of neuroendocrine cells in the small and large intestines of the one-humped camel (Camelus dromedarius). Neuropeptides 41(5) 293–299

    Article  CAS  PubMed  Google Scholar 

  8. Yagil R, Etzion Z (1979) The role of antidiuretic hormone and aldosterone in the dehydrated and rehydrated camel. Comp Biochem Physiol Part A: Physiol 63(2):275–278

    Article  Google Scholar 

  9. Antunes-Rodrigues J et al (2004) Neuroendocrine control of body fluid metabolism. Physiol Rev 84(1):169–208

    Article  CAS  PubMed  Google Scholar 

  10. Ham TS (2002) Regional distribution and relative frequency of gastrointestinal endocrine cells in large intestines of C57BL/6 mice. J Vet Sci 3(3):233–238

    Article  PubMed  Google Scholar 

  11. Burtis CA, Edward RA, Bruns DE (2012) Tietz textbook of clinical chemistry and molecular diagnostics, 5th edn. Elsevier, St. Louis, p 2238. ISBN: 978-1-4160-6164-9

    Google Scholar 

  12. Reynolds GW et al (1991) Gastrin: Its molecular forms and secretion in sheep, in Physiological aspects of digestion and metabolism in ruminants. Proceedings of the Seventh International Symposium on Ruminant Physiology. Elsevier, p 63–87 https://doi.org/10.1016/B978-0-12-702290-1.50011-4

  13. Guandalini S et al (1980) In vitro effects of somatostatin on ion transport in rabbit intestine. Am J Physiol Gastrointest Liver Physiol238(2):G67–G74

    Article  CAS  Google Scholar 

  14. Dharmsathaphorn K, Sherwin RS, Dobbins JW (1980) Somatostatin inhibits fluid secretion in the rat jejunum. Gastroenterology 78(6):1554–1558

    Article  CAS  Google Scholar 

  15. Shin JM et al (2009) The gastric HK-ATPase: structure, function, and inhibition. Pflügers Archiv Eur J Physiol 457(3):609–622

    Article  CAS  Google Scholar 

  16. Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Lab Investig: J Tech Methods Pathol 47(5):412–426

    CAS  Google Scholar 

  17. Ali MA et al (2012) Responses to dehydration in the one-humped camel and effects of blocking the renin-angiotensin system. PloS ONE. https://doi.org/10.1371/journal.pone.0037299

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wajant H (2002) The Fas signaling pathway: more than a paradigm. Science 296(5573):1635–1636. https://doi.org/10.1126/science.1071553

    Article  CAS  PubMed  Google Scholar 

  19. Köhler-Rollefson I, Mundy P, Mathias I (2001) A field manual of camel diseases. Stylus Publishing, Virginia

    Book  Google Scholar 

  20. Hermes-Lima M, Storey JM, Storey KB (2001) Antioxidant defenses and animal adaptation to oxygen availability during environmental stress, in cell and molecular response to stress. Elsevier, Amsterdam, pp 263–287

    Google Scholar 

  21. Schoorlemmer GHM, Evered MD (2002) Reduced feeding during water deprivation depends on hydration of the gut. Am J Physiol-Regul Integr Comp Physiol 283(5):R1061–R1069

    Article  PubMed  Google Scholar 

  22. Cadenas E (1995) Mechanisms of oxygen activation and reactive oxygen species detoxification, in oxidative stress and antioxidant defenses in biology. Springer, New York, pp 1–61

    Book  Google Scholar 

  23. Dedon PC et al (1998) Indirect mutagenesis by oxidative DNA damage: formation of the pyrimidopurinone adduct of deoxyguanosine by base propenal. Proc Natl Acad Sci USA 95(19):11113–11116

    Article  CAS  PubMed  Google Scholar 

  24. Inoue M et al (1999) Cross-talk of NO, superoxide and molecular oxygen, a majesty of aerobic life. Free Radic Res 31(4):251–260. https://doi.org/10.1080/10715769900300831

    Article  CAS  PubMed  Google Scholar 

  25. Dinu C et al (2009) Biochemical modifications of gastric mucosa in oxidativ stress. Sci Papers Anim Sci Biotechnol 42(1):224–229

    Google Scholar 

  26. Patel RP et al (1999) Biological aspects of reactive nitrogen species. Biochim et Biophys Acta (BBA)-Bioenerg 1411(2–3):385–400

    Article  CAS  Google Scholar 

  27. Walker LM et al (2001) Oxidative stress and reactive nitrogen species generation during renal ischemia. Toxicol Sci 63(1):143–148

    Article  CAS  PubMed  Google Scholar 

  28. Hall SJG, Broom DM, Kiddy GNS (1998) Effect of transportation on plasma cortisol and packed cell volume in different genotypes of sheep. Small Rumin Res 29(2):233–237

    Article  Google Scholar 

  29. Crawford DT, Suzuki, Davies K (2000) Redox regulation of gene expression. Antioxidant and redox regulation of genes, pp 21–45

  30. El-Deeb WM (2015) Acute phase response and oxidative stress parameters in pneumonic camel calves (Camelus dromedarius). Bulg J Vet Med 18(3):258–269. https://doi.org/10.15547/bjvm.853

    Article  Google Scholar 

  31. Saleh MA, Mahran OM, Al-Salahy MB (2011) Circulating oxidative stress status in dromedary camels infested with sarcoptic mange. Vet Res Commun 35(1):35–45

    Article  PubMed  Google Scholar 

  32. El-Deeb WM, Buczinski S (2015) The diagnostic and prognostic importance of oxidative stress biomarkers and acute phase proteins in urinary tract infection (UTI) in camels. Peer J 3:e1363. https://doi.org/10.7717/peerj.1363.eCollection

    Article  PubMed  Google Scholar 

  33. Eljalii IM et al (2015) Blood picture and selected oxidative stress biomarkers in dromedary camels naturally infected with Trypanosoma evansi. Int J Vet Sci Res 1(2):46–53. https://doi.org/10.18488/journal.110/2015.1.2/110.2.46.53

    Article  Google Scholar 

  34. Schuster N, Krieglstein K (2002) Mechanisms of TGF-β-mediated apoptosis. Cell Tissue Res 307(1):1–14

    Article  CAS  PubMed  Google Scholar 

  35. Yuan J, Najafov A, Py BF (2016) Roles of caspases in necrotic cell death. Cell 167(7):1693–1704. https://doi.org/10.1016/j.cell.2016.11.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shen Y, White E (2001) p53-dependent apoptosis pathways. Adv Cancer Res 82:55–84

    Article  CAS  PubMed  Google Scholar 

  37. Dejean LM et al (2006) Regulation of the mitochondrial apoptosis-induced channel, MAC, by BCL-2 family proteins. Biochim Biophys Acta 1762(2):191–201

    Article  CAS  PubMed  Google Scholar 

  38. Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18(4):571–580. https://doi.org/10.1038/cdd.2010.191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schweichel JU, Merker HJ (1973) The morphology of various types of cell death in prenatal tissues. Teratology 7(3):253–266. https://doi.org/10.1002/tera.1420070306

    Article  CAS  PubMed  Google Scholar 

  40. Nikoletopoulou V et al (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim et Biophys Acta (BBA)-Mol Cell Res 1833(12):3448–3459

    Article  CAS  Google Scholar 

  41. Djavaheri-Mergny M, Maiuri MC, Kroemer G (2010) Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1. Oncogene 29(12):1717–1719

    Article  CAS  PubMed  Google Scholar 

  42. Leist M, Jäättelä M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2(8):589–598

    Article  CAS  PubMed  Google Scholar 

  43. Mizushima N et al (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Levine B, G Kroemer (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kroemer G, Mariño G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40(2):280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Luo S, Rubinsztein DC (2010) Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death Differ 17(2):268–277. https://doi.org/10.1038/cdd.2009.121

    Article  CAS  PubMed  Google Scholar 

  47. Holler N et al (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1(6):489–495

    Article  CAS  PubMed  Google Scholar 

  48. Robert A (1974) Effects of prostaglandins on the stomach and the intestine. Prostaglandins 6(6):523–532

    Article  CAS  PubMed  Google Scholar 

  49. Robert A (1976) Antisecretory anti-ulcer, cytoprotective and diarrheogenic properties of prostaglandins. Adv Prostaglandin Thromboxane Res 2:507–520

    CAS  PubMed  Google Scholar 

  50. Postius S, Ruoff HJ, Szelenyi I (1985) Prostaglandin formation by isolated gastric parietal and nonparietal cells of the rat. Br J Pharmacol 84(4):871–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shirreffs SM, Maughan RJ (2000) Rehydration and recovery of fluid balance after exercise. Exerc Sport Sci Rev 28(1):27–32

    CAS  PubMed  Google Scholar 

  52. Shirreffs SM (2000) Markers of hydration status. J Sports Med Phys Fit 40(1):80–84

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from The United Arab Emirates University (UAEU)-Program for Advanced Research (UPAR-31M242). DM is supported by Medical Research Council (MR/N022807/1) and The Leverhulme Trust (RPG-2017-287). We thank Dr. Osman M. Ali for the help with the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Murphy or Abdu Adem.

Ethics declarations

Conflict of interest

There is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M.A., Damir, H.A., Amir, N. et al. Effects of long-term dehydration on oxidative stress, apoptotic markers and neuropeptides in the gastric mucosa of the dromedary camel. Mol Cell Biochem 455, 109–118 (2019). https://doi.org/10.1007/s11010-018-3474-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3474-x

Keywords

Navigation