Skip to main content
Log in

Modification of gene expression profiling related to renin–angiotensin system in an ischemia/reperfusion rat model after T3 infusion

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Triiodothyronine (T3) and renin–angiotensin system (RAS) are functionally related in cardiovascular system. Recently, in an in vivo myocardial ischemia/reperfusion (I/R) model in rats, we showed that T3 treatment improved the post-ischemic recovery of cardiac function. In the present study, we used the same experimental model of regional I/R, obtained by 30 min occlusion of the left descending coronary artery, followed by 3-days of reperfusion, to investigate the effect of 48-h treatment (started 1 day after ischemia) with 6 µg/kg/day T3 or vehicle. T3 was delivered by constant subcutaneous infusion via miniosmotic pump. In particular, aim of this work is to evaluate the effects of T3 on the gene expression of the main receptors and enzymes involved in the two cardiac arms of RAS in an in vivo rat model of I/R: AT1R-ACE (detrimental arm) and AT2R/MAS1-ACE2 (protective arm). Gene expression was evaluated by Real-Time PCR in infarct zone (Area-At-Risk: AAR) and in tissues distant from ischemic wound (Remote Zone: RZ). Three different rat groups were used: sham-operated; I/R and I/R + T3. Main result of the study is the opposite response of AT1R and AT2R/MAS1 expression to I/R procedure and to T3 administration after I/R in both AAR and RZ. Moreover, T3 significantly increased ACE and ACE2 enzyme expression in AAR and RZ. This study reveals that T3 stimulates the expression of protective genes related to RAS such as AT2R/MAS1-ACE2 mainly in BZ, suggesting that, at least in part, T3 could be involved in the local cardiac ameliorative response to I/R procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lang CC, Struthers AD (2013) Targeting the renin-angiotensin-aldosterone system in heart failure. Nat Rev Cardiol 10:125–134. https://doi.org/10.1038/nrcardio.2012.196

    Article  CAS  PubMed  Google Scholar 

  2. Barreto-Chaves ML, Carrillo-Sepulveda MA Gomes MS, Diniz DA (2010) Carneiro-Ramos. GP. The crosstalk between thyroid hormone and the renin-angiotensin system. Vasc Pharmacol 52:166–170. https://doi.org/10.1016/j.vph.2009.10.009

    Article  CAS  Google Scholar 

  3. Tavares FM, da Silva IB, Gomes DA, Barreto-Chaves MLM (2013) Angiotensin II type 2 receptor (AT2R) is associated with increased tolerance of the hyperthyroid heart to ischemia-reperfusion. Cardiovasc Drugs Ther 27:393–402. https://doi.org/10.1007/s10557-013-6473-x

    Article  CAS  PubMed  Google Scholar 

  4. De Mello WC, Re RN (2009) Systemic versus local renin angiotensin systems. An overview. In: De Mello WC, Frohlich ED (eds) Renin angiotensin system and cardiovascular disease. Humana Press, New York, pp 1–5

    Google Scholar 

  5. Pearch MJ (1997) Renin-angiotensin system: biochemistry and mechanism of action. Physiol Rev 52:166–170

    Google Scholar 

  6. Steckelings UM, Kaschina E, Unger T (2005) The AT2R receptor-A matter of love and hate. Peptides 26:1401–1409. https://doi.org/10.1016/j.peptides.2005.03.010

    Article  CAS  PubMed  Google Scholar 

  7. Jones ES, Vinh A, McCarthy CA, Gaspari TA, Widdop RE (2008) AT2 receptors: functional relevance in cardiovascular disease. Pharmacol Therapeut 120:292–316. https://doi.org/10.1016/j.pharmthera.2008.08.009

    Article  CAS  Google Scholar 

  8. Bader M (2013) ACE2, angiotensin-(1–7), and Mas: the other side of the coin. Pflugers Arch 465:79–85. https://doi.org/10.1007/s00424-012-1120-0

    Article  CAS  PubMed  Google Scholar 

  9. Steckelings UM, Unger T (2012) Angiotensin II type 2 receptor agonists where should they be applied? Expert Opin Investig Drugs 21:763–766. https://doi.org/10.1517/13543784.2012.664131

    Article  CAS  PubMed  Google Scholar 

  10. Pernomian L, Pernomian L, Baraldi C, Restini A (2014) Counter-regulatory effects played by the ACE-Ang II-AT1 and ACE2-Ang-(1–7)-Mas axes on the reactive oxygen species-mediated control of vascular function: perspectives to pharmacological approaches in controlling vascular complications. Vasa 43:404–414. https://doi.org/10.1024/0301-1526/a000387

    Article  PubMed  Google Scholar 

  11. Swynghedauw B (1999) Molecular mechanisms of myocardial remodeling. Physiol Rev 79:215–262

    Article  CAS  PubMed  Google Scholar 

  12. Pantos C, Mourouzis IS, Tzeis SM, Malliopoulou V, Cokkinos DD, Asimacopoulos P, Carageorgiou HC, Varonos DD, Cokkinos DV (2000) Propranolol diminishes cardiac hypertrophy but does not abolish acceleration of the ischemic contracture in hyperthyroid hearts. J Cardiovasc Pharmacol 36:384–389

    Article  CAS  PubMed  Google Scholar 

  13. Mann DL (2005) Left ventricular size and shape: determinants of mechanical signal transduction pathways. Heart Fail Rev 10:95–100. https://doi.org/10.1007/s10741-005-4636-y

    Article  PubMed  Google Scholar 

  14. Sehgal S, Drazner MH (2007) Left ventricular geometry: does shape matter? Am Heart J 153:153–155. https://doi.org/10.1016/j.ahj.2006.10.026

    Article  PubMed  Google Scholar 

  15. Yoshiyama M, Kim S, Yamagishi H, Omura T, Tani T, Yanagi S, Toda I, Teragaki M, Akioka K, Takeuchi K (1994) Cardioprotective effect of the angiotensin II type I receptor antagonist TCV-116 on ischemia-reperfusion injury. Am Heart J 128:1–6

    Article  CAS  PubMed  Google Scholar 

  16. Xu Y, Kumar D, Dyck JR, Ford WR, Clanachan AS, Lopaschuk GD, Jugdutt BI (2002) AT(1) and AT(2) receptor expression and blockade after acute ischemia-reperfusion in isolated working rat hearts. Am J Physiol Heart Circ Physiol 282:H1206-H1215. https://doi.org/10.1152/ajpheart.00839.2000

    Article  Google Scholar 

  17. Sabatino L, Kusmic C, Nicolini G, Amato R, Casini G, Iervasi G, Balzan S (2016) T3 enhances Ang2 in rat aorta in myocardial I/R: comparison with left ventricle. J Mol Endocrinol 57:139–149. https://doi.org/10.1530/JME-16-0118

    Article  CAS  PubMed  Google Scholar 

  18. Saba A, Donzelli R, Colligiani D, Raffaelli A, Nannipieri M, Kusmic C, Dos Remedios CG, Simonides WS, Iervasi G, Zucchi R (2014) Quantification of thyroxine and 3,5,3′-triiodo-thyronine in human and animal hearts by a novel liquid chromatography-tandem mass spectrometry method. Horm Metab Res 46:628–634. https://doi.org/10.1055/s-0034-1368717

    Article  CAS  PubMed  Google Scholar 

  19. Rajagopalan V, Zhang Y, Ojamaa K, Chen YF, Pingitore A, Pol CJ, Saunders D, Balasubramanian K, Towner RA, AM Gerdes (2016) Safe oral triiodo-L-thyronine therapy protects from post-infarct cardiac dysfunction and arrhythmias without cardiovascular adverse effects. PLoS ONE 11:e0151413

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pantos C, Paizis I, Mourouzis I, Moraitis P, Tzeis S, Karamanoli E, Mourouzis C, Karageorgiou H, Cokkinos DV (2005) Blockade of angiotensin II type 1 receptor diminishes cardiac hypertrophy, but does not abolish thyroxin-induced preconditioning. Horm Metab Res 37:500–504. https://doi.org/10.1055/s-0034-1368717

    Article  CAS  PubMed  Google Scholar 

  21. Tavares FM, da Silva IB, Gomes DA, Barreto-Chaves ML (2013) Angiotensin II type 2 receptor (AT2R) is associated with increased tolerance of the hyperthyroid heart to ischemia-reperfusion. Cardiovasc Drugs Ther 27:393–402. https://doi.org/10.1007/s10557-013-6473-x

    Article  CAS  PubMed  Google Scholar 

  22. Grady EF, Sechi LA, Griffin CA, Schambelan M, Kalinyak JE (1991) Expression of AT2 receptors in the developing rat fetus. J Clin Invest 88:921–933. https://doi.org/10.1172/JCI115395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ohshima K, Mogi M, Nakaoka H, Iwanami J, Min L-J, Kanno H, Tsukuda K, Chisaka T, Bai H-Y, Wang X-L, Ogimoto A, Higaki J, Horiuchi M (2014) Possible role of Angiotensin-Converting-Enzyme 2 and activation of angiotensin II type 2 receptor by angiotensin-(1–7) in improvement of vascular remodeling by angiotensin II type 1 receptor blockade. Hypertension 63:e53–e59. https://doi.org/10.1161/hypertensionaha.113.02426

    Article  Google Scholar 

  24. Yang B, Li D, Phillips MI, Mehta P, Mehta JL (1998) Myocardial angiotensin II receptor expression and ischemia-infusion injury. Vasc Med 3:121–130

    Article  CAS  PubMed  Google Scholar 

  25. Lax CJ, Domenighetti AA, Pavia JM, Di Nicolantonio R, Curl CL, Morris MJ, Delbridge LMD (2004) Transitory reduction in angiotensin AT2 receptor expression levels in postinfarct remodelling in rat myocardium. Clin Exp Pharmacol Physiol 31:512–517. https://doi.org/10.1111/j.1440-1681.2004.04034.x

    Article  CAS  PubMed  Google Scholar 

  26. Mendoza-Torres E, Oyarzùn A, Mondaca-Ruff D, Azocar A, Castro PF, Jalil JE, Chiong M, Lavandero S, Ocaranza MP (2015) ACE2 and vasoactive peptides: novel players in cardiovascular/renal remodeling and hypertension. Ther Adv Cardiovasc Dis 9:217–237. https://doi.org/10.1177/1753944715597623

    Article  CAS  PubMed  Google Scholar 

  27. Hu LW, Benvenuti LA, Liberti EA, Carneiro-Ramos MS, Barreto-Chaves ML (2003) Thyroxine-induced cardiac hypertrophy: influence of adrenergic nervous system versus renin-angiotensin system on myocyte remodeling. Am J Physiol Regul Integr Comp Physiol 285:R1473-R1480. https://doi.org/10.1152/ajpregu.00269.2003

    Article  Google Scholar 

  28. Carneiro-Ramos MS, Diniz GP, Almeida J, Vieira RIP, Pinheiro SVB, Santos RA, Barreto-Chaves MLM (2007) Cardiac angiotensin II type I and type II receptors are increased in rats submitted to experimental hypothyroidism. J Physiol 583:213–223. https://doi.org/10.1113/jphysiol.2007.134080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Tuscany Region Research Grant (DGR 1157/2011) “Study of the molecular, biochemical and metabolic mechanisms involved in the cardioprotective effect of T3”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Sabatino.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabatino, L., Balzan, S., Kusmic, C. et al. Modification of gene expression profiling related to renin–angiotensin system in an ischemia/reperfusion rat model after T3 infusion. Mol Cell Biochem 449, 277–283 (2018). https://doi.org/10.1007/s11010-018-3364-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3364-2

Keywords

Navigation