Skip to main content

Advertisement

Log in

Chagas disease: modulation of the inflammatory response by acetylcholinesterase in hematological cells and brain tissue

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Chagas disease is an acute or chronic illness that causes severe inflammatory response, and consequently, it may activate the inflammatory cholinergic pathway, which is regulated by cholinesterases, including the acetylcholinesterase. This enzyme is responsible for the regulation of acetylcholine levels, an anti-inflammatory molecule linked to the inflammatory response during parasitic diseases. Thus, the aim of this study was to investigate whether Trypanosoma cruzi infection can alter the activity of acetylcholinesterase and acetylcholine levels in mice, and whether these alterations are linked to the inflammatory cholinergic signaling pathway. Twenty-four mice were divided into two groups: uninfected (control group, n = 12) and infected by T. cruzi, Y strain (n = 12). The animals developed acute disease with a peak of parasitemia on day 7 post-infection (PI). Blood, lymphocytes, and brain were analyzed on days 6 and 12 post-infection. In the brain, acetylcholine and nitric oxide levels, myeloperoxidase activity, and histopathology were analyzed. In total blood and brain, acetylcholinesterase activity decreased at both times. On the other hand, acetylcholinesterase activity in lymphocytes increased on day 6 PI compared with the control group. Infection by T. cruzi increased acetylcholine and nitric oxide levels and histopathological damage in the brain of mice associated to increased myeloperoxidase activity. Therefore, an intense inflammatory response in mice with acute Chagas disease in the central nervous system caused an anti-inflammatory response by the activation of the cholinergic inflammatory pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tartarotti E, Oliveira-Azeredo MT, Ceron CR (2004) Problemática Vetorial Da Doença De Chagas. Arq Ciênc Saúde 11(1):44–47

    Google Scholar 

  2. Pinto Dias JC (2013) Human chagas disease and migration in the context of globalization: some particular aspects. J Trop Med 2013(789758):1–9

    Article  Google Scholar 

  3. Drumon JAG, Marcopito LF (2006) Internal migration and distribution of chagas disease mortality, Brazil, 1981–1998. Cad de Saúde Pública 22(10):2131–2140

    Article  Google Scholar 

  4. Nisimura LM, Estato V, Souza EM et al (2014) Acute chagas disease induces cerebral microvasculopathy in mice. PLoS Negl Trop Dis 8(7):1–9

    Article  Google Scholar 

  5. Da Silva AS, Pimentel VC, Fiorenza AM et al (2011) Activity of cholinesterases and adenosine deaminase in blood and serum of rats experimentally infected with Trypanosoma cruzi. Ann Trop Med Parasitol 105(5):385–391

    Article  PubMed  Google Scholar 

  6. Wolkmer P, Traesel CK, Franscicato C et al (2010) Trypanosoma evansi: cholinesterase activity in acutely infected Wistar rats. Exp Parasitol 125:151–255

    Article  Google Scholar 

  7. Borovikova LV, Ivanova S, Zhang M et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462

    Article  CAS  PubMed  Google Scholar 

  8. Soreq H, Seidman S (2001) Acetylcholinesterase new roles for an old actor. Nat Rev Neurosci 2(4):294–302

    Article  CAS  PubMed  Google Scholar 

  9. Das UN (2007) Acetylcholinesterase and butyrylcholinesterase as possible markers of low-grade systemic inflammation. Med Sci Monit 13(12):214–221

    Google Scholar 

  10. Pavlov VA, Tracey KJ (2005) The cholinergic anti-inflammatory pathway. Brain Behav Immun 19:493–499

    Article  CAS  PubMed  Google Scholar 

  11. Cardoso MS, Reis-Cunha JL, Bartholomeu DC (2015) Evasion of the Immune Response by Trypanosoma cruzi during Acute Infection. Front Immunol 6(659):1–15

    Google Scholar 

  12. Silva LH, Nussenzweig V (1953) Sobre uma cepa de Trypanosoma cruzi altamente virulenta para camundongo branco. Folia Clin Biol 20:191–207

    Google Scholar 

  13. Brener Z (1962) Therapeutic activity and criterion of cure in mice experimentally infected with Trypanosoma cruzi. Rev Inst Med Trop Sao Paulo 4:386–396

    Google Scholar 

  14. Böyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Isolation of mononuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1g. Scand J Clin Lab Invest Suppl 452:77–89

    Google Scholar 

  15. Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  16. Ellmann GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharm 7:88–95

    Article  Google Scholar 

  17. Worek F, Mast U, Kiderlen D et al (1999) Improved determination of acetylcholinestrase activity in human whole blood. Clin Chim Acta 288:73–79

    Article  CAS  PubMed  Google Scholar 

  18. Fitzgerald BB, Costa LG (1993) Modulation of muscarinic receptors an acetylcholinesterase activity in lymphocytes and brain areas following repeated organophosphate exposure in rats. Fundam Appl Toxicol 20:210–216

    Article  CAS  PubMed  Google Scholar 

  19. Rocha JBT, Emanuelli T, Pereira ME (1993) Effects of early undernutrition on kinetic parameters of brain acetylcholinesterase from adult rats. Acta Neurobiol Exp 53:431–437

    CAS  Google Scholar 

  20. Sorial ME, El Sayed NSED (2017) Protective effect of valproic acid in streptozotocin-induced sporadic Alzheimer’s disease mouse model: possible involvement of the cholinergic system. Naunyn Schmiedebergs Arch Pharmacol 390(6):581–593

    Article  CAS  PubMed  Google Scholar 

  21. Suzuki K, Ota H, Sasagawa S et al (1983) Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Anal Biochem 132:345–352

    Article  CAS  PubMed  Google Scholar 

  22. Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5(1):62–71

    Article  CAS  PubMed  Google Scholar 

  23. Silman I, Sussman J (2005) Acetylcholinesterase: classical and non classical functions and pharmacology. Curr Opin Pharmacol 5:293–302

    Article  CAS  PubMed  Google Scholar 

  24. Baldissera MD, Bottari NB, Mendes RE et al (2015) Activity of cholinesterases, pyruvate kinase and adenosine deaminase in rats experimentally infected by Fasciola hepatica: influences of these enzymes on inflammatory response and pathological findings. Pathol Res Pract 211(11):871–876

    Article  CAS  PubMed  Google Scholar 

  25. Da Silva AS, Monteiro SG, Gonçalves JF et al (2011) Acetylcholinesterase activity and lipid peroxidation in the brain and spinal cord of rats infected with Trypanosoma evansi. Vet Parasitol 175:237–244

    Article  PubMed  Google Scholar 

  26. Pavlov VA, Tracey KJ (2006) Controlling inflammation: the cholinergic anti-inflammatory pathway. Biochem Soc Trans 34(6):1037–1040

    Article  CAS  PubMed  Google Scholar 

  27. Robbins TW (2005) Chemistry of the mind: neurochemical modulation of prefrontal cortical function. J Comp Neurol 493:140–146

    Article  CAS  PubMed  Google Scholar 

  28. Kawashima K, Fujii T (2003) The lymphocytic cholinergic system and its contribution to the regulation of immune activity. Life Sci 74:675–696

    Article  CAS  PubMed  Google Scholar 

  29. Nizri E, Hamra-Amitay Y, Sicsic C et al (2006) Anti-inflammatory properties of cholinergic up-regulation: a new role for acetylcholinesterase inhibitors. Neuropharmacology 50:540–547

    Article  CAS  PubMed  Google Scholar 

  30. Adams LB, Hibbs JB, Taintor RR, Kraheenbuhl JL (1990) Microbiostatic effect of murine-activated macrophages for Toxoplasma gondii: role for synthesis of inorganic nitrogen from L-arginine. J Immunol 144:2725–2729

    CAS  PubMed  Google Scholar 

  31. Keita M, Vincendeau P, Buguet A et al (2000) Inducible nitric oxide synthase and nitrotyrosine in the central nervoussystem of mice chronically infect. Exp Paras 95(1):19–27

    Article  CAS  Google Scholar 

  32. Da Silva AS, Paim CF, Santos RCV et al (2012) Nitric oxide level, protein oxidation and antioxidant enzymes in rats infected by Trypanosoma evansi. Exp Paras 132:166–170

    Article  Google Scholar 

  33. Da Silva AS, Monteiro SG, Gonçalves JF et al (2011) Trypanosoma evansi: immune response and acetylcholinesterase activity in lymphocytes from infected rats. Exp Paras 127:475–480

    Article  Google Scholar 

  34. Sousa GR, Gomes JA, Fares RC et al (2014) Plasma cytokine expression is associated with cardiac morbidity in chagas disease. PLoS ONE 9(3):1–9

    Google Scholar 

  35. Vasconcelos RH, Azevedo Ede A, Diniz GT et al (2015) Interleukin-10 and tumour necrosis factor-alpha serum levels in chronic Chagas disease patients. Parasite Immunol 37(7):376–379

    Article  CAS  PubMed  Google Scholar 

  36. Rodríguez-Angulo H, Marques J, Mendoza I et al (2017) Differential cytokine profiling in Chagasic patients according to their arrhythmogenic-status. BMC Infect Dis 17(221):1–10

    Google Scholar 

  37. Klebanoff SJ (1999) Myeloperoxidase. Proc Assoc Am Phys 111(5):383–389

    CAS  PubMed  Google Scholar 

  38. Klebanoff SJ, Rosen H (1978) The role of myeloperoxidase in the microbicidal activity of polymorphonuclear leukocytes. Ciba Found Symp 6–8(65):263–284

    Google Scholar 

  39. Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–625

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors offer their thanks to Professor Mario Steindel from the Protozoology Laboratory of Universidade Federal de Santa Catarina (UFSC) for providing the T. cruzi strain used in this study. The authors also thank The funding agency CNPq for the research productivity Grants and financial resource.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandro S. Da Silva.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Ethical approval

The present study was approved by the Ethics Committee for Use of Animals (CEUA) of the Universidade Federal de Santa Maria (UFSM) under protocol number 3960110915.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A.D., Bottari, N.B., do Carmo, G.M. et al. Chagas disease: modulation of the inflammatory response by acetylcholinesterase in hematological cells and brain tissue. Mol Cell Biochem 438, 59–65 (2018). https://doi.org/10.1007/s11010-017-3113-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3113-y

Keywords

Navigation