Skip to main content

Advertisement

Log in

Oxytocin participates on the effects of vasoactive intestinal peptide on food intake and plasma parameters

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Vasoactive intestinal peptide (VIP) is a neurotransmitter with anorectic effect that acts in the hypothalamus to regulate food intake. Oxytocin is a neuropeptide produced in the hypothalamus that controls energy homeostasis and has an inhibitory role on food intake. Thus, the present study aims at verifying the role of oxytocin as a mediator of VIP on energy homeostasis. For this purpose, intracerebroventricular microinjection of oxytocin receptor antagonist (vasotocin, OVT) or vehicle (NaCl 0.9%) was carried out in male rats, and after 15 min, VIP or saline was microinjected. After 15 min of the second microinjection, food intake was evaluated or euthanasia was undertaken for blood collection. There was a reduction on food intake after VIP microinjection and the pretreatment with OVT partially reversed this effect. Hyperglycemia was observed after VIP microinjection, and pretreatment with OVT partially blocked this effect. Plasma corticosterone concentration was significantly increased after VIP or OVT. Plasma levels of free fatty acids were decreased by VIP, but not when VIP was microinjected after OVT. Thus, OVT partially reversed VIP-induced hypophagia and changes on plasma metabolic parameters, suggesting a role for oxytocin as a mediator of VIP effects on energy homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Said SI, Mutt V (1970) Polypeptide with broad biological activity: isolation from small intestine. Science 169:1217–1218

    Article  CAS  PubMed  Google Scholar 

  2. Taylor DP, Pert CB (1979) Vasoactive intestinal polypeptide: specific binding to rat brain membranes. Proc Natl Acad Sci USA 76:660–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alexander LD, Sander LD (1994) Vasoactive intestinal peptide stimulates ACTH and corticosterone release after injection into the PVN. Regul Pept 51:221–227

    Article  CAS  PubMed  Google Scholar 

  4. Ghourab S, Beale EK, Semjonous NM, Simpson KA, Martin NM, Ghatei MA, Bloom SR, Smith KL (2011) Intracerebroventricular administration of vasoactive intestinal peptide inhibits food intake. Regul Pept 172:8–15

    Article  CAS  PubMed  Google Scholar 

  5. Sims KB, Hoffman DL, Said SI, Zimmerman EA (1980) Vasoactive intestinal polypeptide (VIP) in mouse and rat brain: an immunocytochemical study. Brain Res 186:165–183

    Article  CAS  PubMed  Google Scholar 

  6. De Souza EB, Seifert H, Kuhar MJ (1985) Vasoactive intestinal peptide receptor localization in rat forebrain by autoradiography. Neurosci Lett 56:113–120

    Article  PubMed  Google Scholar 

  7. Mezey E, Kiss JZ (1985) Vasoactive intestinal peptide-containing neurons in the paraventricular nucleus may participate in regulating prolactin secretion. Proc Natl Acad Sci USA 82:245–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Köves K, Arimura A, Görcs TG, Somogyvári-Vigh A (1991) Comparative distribution of immunoreactive pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide in rat forebrain. Neuroendocrinology 54:159–169

    Article  PubMed  Google Scholar 

  9. Sheward WJ, Lutz EM, Harmar AJ (1995) The distribution of vasoactive intestinal peptide2 receptor messenger RNA in the rat brain and pituitary gland as assessed by in situ hybridization. Neuroscience 67:409–418

    Article  CAS  PubMed  Google Scholar 

  10. Gerhold LM, Horvath TL, Freeman ME (2001) Vasoactive intestinal peptide fibers innervate neuroendocrine dopaminergic neurons. Brain Res 91:48–56

    Article  Google Scholar 

  11. Falke N (1991) Modulation of oxytocin and vasopressin release from rat neurosecretosomes: the roles of VIP oxytocin and GABA. Neuropeptides 18:143–147

    Article  CAS  PubMed  Google Scholar 

  12. Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure, function and regulation. Physiol Rev 81:629–683

    Article  CAS  PubMed  Google Scholar 

  13. Olszewski PK, Klockars A, Schiöth HB, Levine AS (2010) Oxytocin as feeding inhibitor: maintaining homeostasis in consummatory behavior. Pharmacol Biochem Behav 97:47–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maejima Y, Iwasaki Y, Yamahara Y, Kodaira M, Sedbazar U, Yada T (2011) Peripheral oxytocin treatment ameliorates obesity by reducing food intake and visceral fat mass. Aging 3:1169–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morton GJ, Thatcher BS, Reidelberger RD, Ogimoto K, Wolden-Hanson T, Baskin DG, Schwartz MW, Blevins JE (2012) Peripheral oxytocin suppresses food intake and causes weight loss in diet-induced obese rats. Am J Physiol Endocrinol Metab 302:E134–E144

    Article  CAS  PubMed  Google Scholar 

  16. Olszewski PK, Klockars A, Olszewska AM, Fredriksson R, Schiöth HB, Levine AS (2010) Molecular, immunohistochemical, and pharmacological evidence of oxytocin’s role as inhibitor of carbohydrate but not fat intake. Endocrinology 151:4736–4744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Olson BR, Drutarosky MD, Chow MS, Hruby VJ, Stricker EM, Verbalis JG (1991) Oxytocin and an oxytocin agonist administered centrally decrease food intake in rats. Peptides 12:113–118

    Article  CAS  PubMed  Google Scholar 

  18. Arletti R, Benelli A, Bertolini A (1989) Influence of oxytocin on feeding behavior in the rat. Peptides 10:89–93

    Article  CAS  PubMed  Google Scholar 

  19. Arletti R, Benelli A, Bertolini A (1990) Oxytocin inhibits food and fluid intake in rats. Physiol Behav 48:825–830

    Article  CAS  PubMed  Google Scholar 

  20. Uchôa ET, Silva LECM, Castro M, Antunes-Rodrigues J, Elias LL (2009) Hypothalamic oxytocin neurons modulate hypophagic effect induced by adrenalectomy. Horm Behav 56:532–538

    Article  PubMed  Google Scholar 

  21. Uchôa ET, Zahm DS, De Carvalho Borges B, Rorato R, Antunes-Rodrigues J, Elias LL (2013) Oxytocin projections to the nucleus of the solitary tract contribute to the increased meal-related satiety responses in primary adrenal insufficiency. Exp Physiol 98:1495–1504

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tachibana T, Saito S, Tomonaga S, Takagi T, Saito ES, Boswell T, Furuse M (2003) Intracerebroventricular injection of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibits feeding in chicks. Neurosci Lett 339:203–206

    Article  CAS  PubMed  Google Scholar 

  23. Paxinos G, Watson C (1997) The rat brain in stereotaxic coordenates. Academic Press, San Diego

    Google Scholar 

  24. Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6:24

    Article  CAS  Google Scholar 

  25. Falholt K, Lund B, Falholt W (1973) An easy colorimetric micromethod for routine determination of free fatty acids in plasma. Clin Chim Acta 46:105–111

    Article  CAS  PubMed  Google Scholar 

  26. Guillemin R, Clayton GW, Smith JD, Lipscomb HS (1958) Measurement of free corticosteroids in rat plasma: physiological validation of a method. Endocrinology 63:349–358

    Article  CAS  PubMed  Google Scholar 

  27. Nagai N, Kajikawa H, Sasaki T, Nagai K, Nakagawa H (1994) Hyperglycemic response to intracranial injection of vasoactive intestinal peptide. J Clin Biochem Nutr 17:29–34

    Article  CAS  Google Scholar 

  28. Barth E, Albuszies G, Baumgart K, Matejovic M, Wachter U, Vogt J, Radermacher P, Calzia E (2007) Glucose metabolism and catecholamines. Crit Care Med 35:S508–S518

    Article  CAS  PubMed  Google Scholar 

  29. Nunn N, Womack M, Dart C, Barrett-Jolley R (2011) Function and pharmacology of spinally-projecting sympathetic pre-autonomic neurones in the paraventricular nucleus of the hypothalamus. Curr Neuropharmacol 9:262–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yee JR, Kenkel WM, Frijling JL, Dodhia S, Onishi KG, Tovar S, Saber MJ, Lewis GF, Liu W, Porges SW, Carter CS (2016) Oxytocin promotes functional coupling between paraventricular nucleus and both sympathetic and parasympathetic cardioregulatory nuclei. Horm Behav 80:82–91

    Article  CAS  PubMed  Google Scholar 

  31. Altszuler N, Hampshire J (1981) Oxytocin infusion increases plasma insulin and glucagon levels and glucose production and uptake in the normal dog. Diabetes 30:112–114

    Article  CAS  PubMed  Google Scholar 

  32. Vila G, Riedl M, Resl M, Van Der Lely AJ, Hofland LJ, Clodi M, Luger A (2009) Systemic administration of oxytocin reduces basal and lipopolysaccharide-induced ghrelin levels in healthy men. J Endocrinol 203:175–179

    Article  CAS  PubMed  Google Scholar 

  33. Camerino C (2009) Low sympathetic tone and obese phenotype in oxytocin-deficient mice. Obesity 17:980–984

    Article  CAS  PubMed  Google Scholar 

  34. Richter WO, Robl H, Schwandt P (1989) Human glucagon and vasoactive intestinal polypeptide (VIP) stimulate free fatty acid release from human adipose tissue in vitro. Peptides 10:333–335

    Article  CAS  PubMed  Google Scholar 

  35. van Harmelen V, Reynisdottir S, Cianflone K, Degerman E, Hoffstedt J, Nilsell K, Sniderman A, Arner P (1999) Mechanisms involved in the regulation of free fatty acid release from isolated human fat cells by acylation-stimulating protein and insulin. J Biol Chem 274:18243–18251

    Article  PubMed  Google Scholar 

  36. Mirsky IA (1963) Effect of oxytocin, vasopressin, and related peptides on plasma free fatty acids. Am J Physiol 204:842–846

    CAS  Google Scholar 

  37. Itoh S, Hirota R, Katsuura G (1982) Effect of cholecystokinin octapeptide and vasoactive intestinal polypeptide on adrenocortical secretion in the rat. Jpn J Physiol 32:553–560

    Article  CAS  PubMed  Google Scholar 

  38. Windle RJ, Shanks N, Lightman SL, Ingram CD (1997) Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats. Endocrinology 138:2829–2834

    Article  CAS  PubMed  Google Scholar 

  39. Olson BR, Drutarosky MD, Stricker EM, Verbalis JG (1991) Brain oxytocin receptors mediate corticotropin-releasing hormone-induced anorexia. Am J Physiol Regul Integr Comp Physiol 260:R448–R452

    Article  CAS  Google Scholar 

  40. Olson BR, Drutarosky MD, Stricker EM, Verbalis JG (1991) Brain oxytocin receptor antagonism blunts the effects of anorexigenic treatments in rats: evidence for central oxytocin inhibition of food intake. Endocrinology 129:785–791

    Article  CAS  PubMed  Google Scholar 

  41. Blevins JE, Eakin TJ, Murphy JA, Schwartz MW, Baskin DG (2003) Oxytocin innervation of caudal brainstem nuclei activated by cholecystokinin. Brain Res 993:30–41

    Article  CAS  PubMed  Google Scholar 

  42. Blevins JE, Schwartz MW, Baskin DG (2004) Evidence that paraventricular nucleus oxytocin neurons link hypothalamic leptin action to caudal brain stem nuclei controlling meal size. Am J Physiol Regul Integr Comp Physiol 287:R87–R96

    Article  CAS  PubMed  Google Scholar 

  43. Yosten GLC, Samson WK (2010) The anorexigenic and hypertensive effects of nesfatin-1 are reversed by pretreatment with an oxytocin receptor antagonist. Am J Physiol Regul Integr Comp Physiol 298:R1642–R1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu XY, Barsh GS, Akil H, Watson SJ (2003) Interaction between alpha-melanocyte-stimulating hormone and corticotropin-releasing hormone in the regulation of feeding and hypothalamo-pituitary-adrenal responses. J Neurosci 23:7863–7872

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico, Paraná, Brasil, for the Grant (Protocol Number 23088). ABM thanks Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for Master fellowship. We also would like to thank Dr. Cláudia Bueno dos Reis Martinez (head of Laboratório de Ecofisiologia Animal, State University of Londrina) for the use of the Victor3™, PerkinElmer. Funding was provided by PRONEX-CNPq-Fundação Araucária-PR, for the Grant (Protocol Number 08586).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cássia Thaïs B. V. Zaia or Ernane T. Uchôa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, A.B., Garnica-Siqueira, M.C., Zaia, D.A.M. et al. Oxytocin participates on the effects of vasoactive intestinal peptide on food intake and plasma parameters. Mol Cell Biochem 437, 177–183 (2018). https://doi.org/10.1007/s11010-017-3106-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3106-x

Keywords

Navigation