Skip to main content
Log in

Cellular growth and tube formation of HTR8/SVneo trophoblast: effects of exogenously added fatty acid-binding protein-4 and its inhibitor

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Adequate placental angiogenesis is critical for the establishment of the placental circulation and thus for normal feto-placental growth and development. Fatty acid-binding protein-4 (FABP4) plays a pro-angiogenic role in endothelial cells; however, very little information is available in placental first trimester trophoblast cells. Here we report that exogenously added FABP4 (exo-FABP4) stimulated tube formation (as a measure of in vitro angiogenesis) in HTR8/SVneo trophoblastic cells. HTR-8/SVneo cells were incubated in the presence of exogenously added FABP4 at different concentrations and time points. Cellular growth, proliferation, in vitro tube formation, expression of growth stimulatory-, fatty acid transporters, and angiogenic genes were investigated. Internalization of exo-FABP4 was carried out using immunocytochemistry. Radioactive fatty acid uptake was determined in the presence and absence of FABP4 metabolic inhibitor. Exo-FABP4 (10–100 ng/ml) stimulated proliferation of HTR8/SVneo cells as compared to control. Exo-FABP4 dose dependently increased growth and viability of the cells to the similar extent as done by 50 µM of arachidonic acid. Exo-FABP4-induced tube formation and proliferation were significantly inhibited by FABP4 (BMS309403) inhibitor. Exo-FABP4 stimulated the expression of growth stimulatory genes such as tissue inhibitor of matrix metalloproteinases-1 (TIMP1), insulin-like growth factor 1 (IGF1), and also prokineticin 2 (PROK2), the pro-angiogenic mediators in these cells. In addition, expressions of genes associated with proliferation and differentiation such as sonic hedgehog (SHH) and WNT1 inducible signalling pathway protein 1 (WISP1) were significantly expressed when cells were exposed to exo-FABP4. Our findings reveal a pro-angiogenic role of FABP4 in first trimester placental trophoblast cells and its regulation may have impact in placental physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Duttaroy AK (2009) Transport of fatty acids across the human placenta: a review. Prog Lipid Res 48:52–61. doi:10.1016/j.plipres.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  2. Ghelfi E, Yu CW, Elmasri H, Terwelp M, Lee CG, Bhandari V, Comhair SA, Erzurum SC, Hotamisligil GS, Elias JA, Cataltepe S (2013) Fatty acid binding protein 4 regulates VEGF-induced airway angiogenesis and inflammation in a transgenic mouse model: implications for asthma. Am J Pathol 182:1425–1433. doi:10.1016/j.ajpath.2012.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yu CW, Liang X, Lipsky S, Karaaslan C, Kozakewich H, Hotamisligil GS, Bischoff J, Cataltepe S (2016) Dual role of fatty acid-binding protein 5 on endothelial cell fate: a potential link between lipid metabolism and angiogenic responses. Angiogenesis 19:95–106. doi:10.1007/s10456-015-9491-4

    Article  CAS  PubMed  Google Scholar 

  4. Elmasri H, Karaaslan C, Teper Y, Ghelfi E, Weng M, Ince TA, Kozakewich H, Bischoff J, Cataltepe S (2009) Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells. FASEB J 23:3865–3873. doi:10.1096/fj.09-134882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Elmasri H, Ghelfi E, Yu CW, Traphagen S, Cernadas M, Cao H, Shi GP, Plutzky J, Sahin M, Hotamisligil G, Cataltepe S (2012) Endothelial cell-fatty acid binding protein 4 promotes angiogenesis: role of stem cell factor/c-kit pathway. Angiogenesis. doi:10.1007/s10456-012-9274-0

    PubMed  PubMed Central  Google Scholar 

  6. Cataltepe O, Arikan MC, Ghelfi E, Karaaslan C, Ozsurekci Y, Dresser K, Li Y, Smith TW, Cataltepe S (2011) Fatty acid binding protein 4 is expressed in distinct endothelial and non-endothelial cell populations in glioblastoma. Neuropathol Appl Neurobiol. doi:10.1111/j.1365-2990.2011.01237.x

    Google Scholar 

  7. Johnsen GM, Basak S, Weedon-Fekjaer MS, Staff AC, Duttaroy AK (2011) Docosahexaenoic acid stimulates tube formation in first trimester trophoblast cells, HTR8/SVneo. Placenta 32:626–632. doi:10.1016/j.placenta.2011.06.009

    Article  CAS  PubMed  Google Scholar 

  8. Basak S, Das MK, Duttaroy AK (2013) Fatty acid-induced angiogenesis in first trimester placental trophoblast cells: possible roles of cellular fatty acid-binding proteins. Life Sci 93:755–762. doi:10.1016/j.lfs.2013.09.024

    Article  CAS  PubMed  Google Scholar 

  9. Basak S, Duttaroy AK (2012) Leptin induces tube formation in first-trimester extravillous trophoblast cells. Eur J Obstet Gynecol Reprod Biol. doi:10.1016/j.ejogrb.2012.05.033

    PubMed  Google Scholar 

  10. Basak S, Duttaroy AK (2013) cis-9, trans-11 Conjugated linoleic acid stimulates expression of angiopoietin like-4 in the placental extravillous trophoblast cells. Biochim Biophys Acta 1831:834–843. doi:10.1016/j.bbalip.2013.01.012

    Article  CAS  PubMed  Google Scholar 

  11. Biron-Shental T, Schaiff WT, Rimon E, Shim TL, Nelson DM, Sadovsky Y (2008) Hypoxia enhances the expression of follistatin-like 3 in term human trophoblasts. Placenta 29:51–57. doi:10.1016/j.placenta.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  12. Scifres CM, Chen B, Nelson DM, Sadovsky Y (2011) Fatty acid binding protein 4 regulates intracellular lipid accumulation in human trophoblasts. J Clin Endocrinol Metab 96:E1083–E1091. doi:10.1210/jc.2010-2084

    Article  PubMed  PubMed Central  Google Scholar 

  13. Basak S, Duttaroy AK (2013) Effects of fatty acids on angiogenic activity in the placental extravillious trophoblast cells. Prostaglandins Leukot Essent Fatty Acids 88:155–162. doi:10.1016/j.plefa.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  14. Harjes U, Bridges E, McIntyre A, Fielding BA, Harris AL (2014) Fatty acid-binding protein 4, a point of convergence for angiogenic and metabolic signaling pathways in endothelial cells. J Biol Chem 289:23168–23176. doi:10.1074/jbc.M114.576512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Scifres CM, Catov JM, Simhan H (2012) Maternal serum fatty acid binding protein 4 (FABP4) and the development of preeclampsia. J Clin Endocrinol Metab 97:E349–E356. doi:10.1210/jc.2011-2276

    Article  CAS  PubMed  Google Scholar 

  16. Wotherspoon AC, Young IS, McCance DR, Patterson CC, Maresh MJ, Pearson DW, Walker JD, Holmes VA, Diabetes and Pre-eclampsia Intervention Trial Study Group (2016) Serum fatty acid binding protein 4 (FABP4) predicts pre-eclampsia in women with type 1 diabetes. Diabetes Care 39:1827–1829. doi:10.2337/dc16-0803

    Article  PubMed  Google Scholar 

  17. Eriksen AB, Indrevaer RL, Holm KL, Landskron J, Blomhoff HK (2012) TLR9-signaling is required for turning retinoic acid into a potent stimulator of RP105 (CD180)-mediated proliferation and IgG synthesis in human memory B cells. Cell Immunol 279:87–95. doi:10.1016/j.cellimm.2012.09.003

    Article  CAS  PubMed  Google Scholar 

  18. Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD, Rich JN (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66:7843–7848. doi:10.1158/0008-5472.CAN-06-1010

    Article  CAS  PubMed  Google Scholar 

  19. Pandya AD, Das MK, Sarkar A, Vilasagaram S, Basak S, Duttaroy AK (2016) Tube formation in the first trimester placental trophoblast cells: differential effects of angiogenic growth factors and fatty acids. Cell Biol Int 40:652–661. doi:10.1002/cbin.10601

    Article  CAS  PubMed  Google Scholar 

  20. Elmasri H, Ghelfi E, Yu CW, Traphagen S, Cernadas M, Cao H, Shi GP, Plutzky J, Sahin M, Hotamisligil G, Cataltepe S (2012) Endothelial cell-fatty acid binding protein 4 promotes angiogenesis: role of stem cell factor/c-kit pathway. Angiogenesis 15:457–468. doi:10.1007/s10456-012-9274-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thompson BR, Mazurkiewicz-Munoz AM, Suttles J, Carter-Su C, Bernlohr DA (2009) Interaction of adipocyte fatty acid-binding protein (AFABP) and JAK2: AFABP/aP2 as a regulator of JAK2 signaling. J Biol Chem 284:13473–13480. doi:10.1074/jbc.M900075200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Basak S, Das MK, Srinivas V, Duttaroy AK (2015) The interplay between glucose and fatty acids on tube formation and fatty acid uptake in the first trimester trophoblast cells, HTR8/SVneo. Mol Cell Biochem 401:11–19. doi:10.1007/s11010-014-2287-9

    Article  CAS  PubMed  Google Scholar 

  23. Girona J, Rosales R, Plana N, Saavedra P, Masana L, Vallve JC (2013) FABP4 induces vascular smooth muscle cell proliferation and migration through a MAPK-dependent pathway. PLoS ONE 8:e81914. doi:10.1371/journal.pone.0081914

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fata JE, Leco KJ, Moorehead RA, Martin DC, Khokha R (1999) Timp-1 is important for epithelial proliferation and branching morphogenesis during mouse mammary development. Dev Biol 211:238–254. doi:10.1006/dbio.1999.9313

    Article  CAS  PubMed  Google Scholar 

  25. Yao F, Li Z, Ehara T, Yang L, Wang D, Feng L, Zhang Y, Wang K, Shi Y, Duan H, Zhang L (2015) Fatty acid-binding protein 4 mediates apoptosis via endoplasmic reticulum stress in mesangial cells of diabetic nephropathy. Mol Cell Endocrinol 411:232–242. doi:10.1016/j.mce.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  26. Lamounier-Zepter V, Look C, Schunck WH, Schlottmann I, Woischwill C, Bornstein SR, Xu A, Morano I (2015) Interaction of epoxyeicosatrienoic acids and adipocyte fatty acid-binding protein in the modulation of cardiomyocyte contractility. Int J Obes (Lond) 39:755–761. doi:10.1038/ijo.2014.193

    Article  CAS  Google Scholar 

  27. Lu L, Wang YN, Sun WH, Liu ZH, Zhang Q, Pu LJ, Yang K, Wang LJ, Zhu ZB, Meng H, Yang P, Du R, Chen QJ, Wang LS, Yu H, Shen WF (2013) Two-dimensional fluorescence in-gel electrophoresis of coronary restenosis tissues in minipigs: increased adipocyte fatty acid binding protein induces reactive oxygen species-mediated growth and migration in smooth muscle cells. Arterioscler Thromb Vasc Biol 33:572–580. doi:10.1161/ATVBAHA.112.301016

    Article  CAS  PubMed  Google Scholar 

  28. Bosquet A, Guaita-Esteruelas S, Saavedra P, Rodriguez-Calvo R, Heras M, Girona J, Masana L (2016) Exogenous FABP4 induces endoplasmic reticulum stress in HepG2 liver cells. Atherosclerosis 249:191–199. doi:10.1016/j.atherosclerosis.2016.04.012

    Article  CAS  PubMed  Google Scholar 

  29. Traboulsi W, Brouillet S, Sergent F, Boufettal H, Samouh N, Aboussaouira T, Hoffmann P, Feige JJ, Benharouga M, Alfaidy N (2015) Prokineticins in central and peripheral control of human reproduction. Horm Mol Biol Clin Investig 24:73–81. doi:10.1515/hmbci-2015-0040

    CAS  PubMed  Google Scholar 

  30. Saavedra P, Girona J, Bosquet A, Guaita S, Canela N, Aragones G, Heras M, Masana L (2015) New insights into circulating FABP4: interaction with cytokeratin 1 on endothelial cell membranes. Biochim Biophys Acta 1853:2966–2974. doi:10.1016/j.bbamcr.2015.09.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Aud Jørgensen for her technical assistance. We are grateful to Camilla Solberg for her help in thymidine assay. The authors convey their thanks to Srinivas Vilasagaram for his assistance in siRNA experiments. This study was supported by the grant from the Thune Holst Foundation and HRD fellowship, Department of Health Research (Dr. Sanjay Basak), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim K. Duttaroy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 108 kb)

Supplementary Fig. 1. Silencing of FABP4 mRNA in the first trimester trophoblast cell line, HTR8/SVneo and endothelial cell line, EA.hy926 Cells (104 cells/well/96 well) were transfected with scramble siRNA (control) and target siRNAs (FABP4 or Cyclophilin B) at final concentration of 25 nM for 48 h. Knockdown efficiency was measured by mRNA expression levels of FABP4 or Cyclophilin after normalized with TBP (endogenous control) in both HTR8/SVneo and EA.hy926 cells . A, B Fold mRNA expression of cyclophilin B (positive control), and FABP4 are presented for HTR8/SVneo cells and C FABP4 level for EA.hy926 cells after silencing of the respective genes for 48 h

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basak, S., Sarkar, A., Mathapati, S. et al. Cellular growth and tube formation of HTR8/SVneo trophoblast: effects of exogenously added fatty acid-binding protein-4 and its inhibitor. Mol Cell Biochem 437, 55–64 (2018). https://doi.org/10.1007/s11010-017-3095-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3095-9

Keywords

Navigation