Skip to main content
Log in

The presence of modified nucleosides in extracellular fluids leads to the specific incorporation of 5-chlorocytidine into RNA and modulates the transcription and translation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Myeloperoxidase (MPO) is able to promote several kinds of damage and is involved in mechanisms leading to various diseases such as atherosclerosis or cancers. An example of these damages is the chlorination of nucleic acids, which is considered as a specific marker of the MPO activity. Since 5-chlorocytidine has been recently shown in healthy donor plasmas, this study aimed at discovering if these circulating modified nucleosides could be incorporated into RNA and DNA and if their presence impacts the ability of enzymes involved in the incorporation, transcription, and translation processes. Experimentations, which were carried out in vitro with endothelial and prostatic cells, showed a large penetration of all chloronucleosides but an exclusive incorporation of 5-chlorocytidine into RNA. However, no incorporation into DNA was observed. This specific incorporation is accompanied by an important reduction of translation yield. Although, in vitro, DNA polymerase processed in the presence of chloronucleosides but more slowly than in control conditions, ribonucleotide reductase could not reduce chloronucleotides prior to the replication. This reduction seems to be a limiting step, protecting DNA from chloronucleoside incorporation. This study shows the capacity of transcription enzyme to specifically incorporate 5-chlorocytidine into RNA and the loss of capacity—complete or partial—of different enzymes, involved in replication, transcription or translation, in the presence of chloronucleosides. Questions remain about the long-term impact of such specific incorporation in the RNA and such decrease of protein production on the cell viability and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kundu JK, Surh YJ (2012) Emerging avenues linking inflammation and cancer. Free Radic Biol Med 52(9):2013–2037. doi:10.1016/j.freeradbiomed.2012.02.035

    Article  CAS  PubMed  Google Scholar 

  2. Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77(5):598–625. doi:10.1189/jlb.1204697

    Article  CAS  PubMed  Google Scholar 

  3. Kundu JK, Surh YJ (2008) Inflammation: gearing the journey to cancer. Mutat Res 659(1–2):15–30. doi:10.1016/j.mrrev.2008.03.002

    Article  CAS  PubMed  Google Scholar 

  4. Freitas M, Baldeiras I, Proenca T, Alves V, Mota-Pinto A, Sarmento-Ribeiro A (2012) Oxidative stress adaptation in aggressive prostate cancer may be counteracted by the reduction of glutathione reductase. FEBS Open Bio 2:119–128. doi:10.1016/j.fob.2012.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  5. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49(11):1603–1616. doi:10.1016/j.freeradbiomed.2010.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Klebanoff SJ (1999) Myeloperoxidase. Proc Assoc Am Physicians 111(5):383–389

    CAS  PubMed  Google Scholar 

  7. Kettle AJ, Winterbourn CC (1997) Myeloperoxidase: a key regulator of neutrophil oxidant production. Redox Rep 3:3–15

    Article  CAS  PubMed  Google Scholar 

  8. Parker H, Albrett AM, Kettle AJ, Winterbourn CC (2012) Myeloperoxidase associated with neutrophil extracellular traps is active and mediates bacterial killing in the presence of hydrogen peroxide. J Leukoc Biol 91(3):369–376. doi:10.1189/jlb.0711387

    Article  CAS  PubMed  Google Scholar 

  9. Parker H, Winterbourn CC (2012) Reactive oxidants and myeloperoxidase and their involvement in neutrophil extracellular traps. Front Immunol 3:424. doi:10.3389/fimmu.2012.00424

    PubMed  Google Scholar 

  10. Kato Y (2016) Neutrophil myeloperoxidase and its substrates: formation of specific markers and reactive compounds during inflammation. J Clin Biochem Nutr 58(2):99–104. doi:10.3164/jcbn.15-104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ohshima H, Tazawa H, Sylla BS, Sawa T (2005) Prevention of human cancer by modulation of chronic inflammatory processes. Mutat Res 591(1–2):110–122. doi:10.1016/j.mrfmmm.2005.03.030

    Article  CAS  PubMed  Google Scholar 

  12. Gaut JP, Yeh GC, Tran HD, Byun J, Henderson JP, Richter GM, Brennan ML, Lusis AJ, Belaaouaj A, Hotchkiss RS, Heinecke JW (2001) Neutrophils employ the myeloperoxidase system to generate antimicrobial brominating and chlorinating oxidants during sepsis. Proc Natl Acad Sci USA 98(21):11961–11966. doi:10.1073/pnas.211190298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chapman AL, Senthilmohan R, Winterbourn CC, Kettle AJ (2000) Comparison of mono- and dichlorinated tyrosines with carbonyls for detection of hypochlorous acid modified proteins. Arch Biochem Biophys 377(1):95–100. doi:10.1006/abbi.2000.1744

    Article  CAS  PubMed  Google Scholar 

  14. Henderson JP, Byun J, Heinecke JW (1999) Molecular chlorine generated by the myeloperoxidase-hydrogen peroxide-chloride system of phagocytes produces 5-chlorocytosine in bacterial RNA. J Biol Chem 274(47):33440–33448

    Article  CAS  PubMed  Google Scholar 

  15. Stanley NR, Pattison DI, Hawkins CL (2010) Ability of hypochlorous acid and N-chloramines to chlorinate DNA and its constituents. Chem Res Toxicol 23(7):1293–1302. doi:10.1021/tx100188b

    Article  CAS  PubMed  Google Scholar 

  16. Masuda M, Suzuki T, Friesen MD, Ravanat JL, Cadet J, Pignatelli B, Nishino H, Ohshima H (2001) Chlorination of guanosine and other nucleosides by hypochlorous acid and myeloperoxidase of activated human neutrophils. Catalysis by nicotine and trimethylamine. J Biol Chem 276(44):40486–40496. doi:10.1074/jbc.M102700200

    Article  CAS  PubMed  Google Scholar 

  17. Gungor N, Godschalk RW, Pachen DM, Van Schooten FJ, Knaapen AM (2007) Activated neutrophils inhibit nucleotide excision repair in human pulmonary epithelial cells: role of myeloperoxidase. FASEB J 21(10):2359–2367. doi:10.1096/fj.07-8163com

    Article  PubMed  Google Scholar 

  18. Gungor N, Haegens A, Knaapen AM, Godschalk RW, Chiu RK, Wouters EF, van Schooten FJ (2010) Lung inflammation is associated with reduced pulmonary nucleotide excision repair in vivo. Mutagenesis 25(1):77–82. doi:10.1093/mutage/gep049

    Article  PubMed  Google Scholar 

  19. Castillo-Tong DC, Pils D, Heinze G, Braicu I, Sehouli J, Reinthaller A, Schuster E, Wolf A, Watrowski R, Maki RA, Zeillinger R, Reynolds WF (2014) Association of myeloperoxidase with ovarian cancer. Tumour Biol 35(1):141–148. doi:10.1007/s13277-013-1017-3

    Article  CAS  PubMed  Google Scholar 

  20. Roumeguere T, Delree P, Van Antwerpen P, Rorive S, Vanhamme L, de Ryhove Lde L, Serteyn D, Wespes E, Vanhaerverbeek M, Boudjeltia KZ (2012) Intriguing location of myeloperoxidase in the prostate: a preliminary immunohistochemical study. Prostate 72(5):507–513. doi:10.1002/pros.21452

    Article  CAS  PubMed  Google Scholar 

  21. Khalili M, Mutton LN, Gurel B, Hicks JL, De Marzo AM, Bieberich CJ (2010) Loss of Nkx3.1 expression in bacterial prostatitis: a potential link between inflammation and neoplasia. Am J Pathol 176(5):2259–2268. doi:10.2353/ajpath.2010.080747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Noyon C, Delporte C, Dufour D, Cortese M, Rousseau A, Poelvoorde P, Nève J, Vanhamme L, Zouaoui Boudjeltia K, Roumeguère T, Van Antwerpen P (2016) Validation of a sensitive LC/MSMS method for chloronucleoside analysis in biological matrixes and its applications. Talanta 154:322–328. doi:10.1016/j.talanta.2016.03.087

    Article  CAS  PubMed  Google Scholar 

  23. Moguilevsky N, Garcia-Quintana L, Jacquet A, Tournay C, Fabry L, Pierard L, Bollen A (1991) Structural and biological properties of human recombinant myeloperoxidase produced by Chinese hamster ovary cell lines. Eur J Biochem 197(3):605–614

    Article  CAS  PubMed  Google Scholar 

  24. Van Antwerpen P, Moreau P, Zouaoui Boudjeltia K, Babar S, Dufrasne F, Moguilevsky N, Vanhaeverbeek M, Ducobu J, Neve J (2008) Development and validation of a screening procedure for the assessment of inhibition using a recombinant enzyme. Talanta 75(2):503–510. doi:10.1016/j.talanta.2007.11.040

    Article  PubMed  Google Scholar 

  25. Ravanat JL, Douki T, Duez P, Gremaud E, Herbert K, Hofer T, Lasserre L, Saint-Pierre C, Favier A, Cadet J (2002) Cellular background level of 8-oxo-7,8-dihydro-2′-deoxyguanosine: an isotope based method to evaluate artefactual oxidation of DNA during its extraction and subsequent work-up. Carcinogenesis 23(11):1911–1918

    Article  CAS  PubMed  Google Scholar 

  26. Cory JG, Mansell MM (1975) Comparison of the cytidine 5′-diphosphate and adenosine 5′-diphosphate reductase activities of mammalian ribonucleotide reductase. Cancer Res 35(9):2327–2331

    CAS  PubMed  Google Scholar 

  27. Cory JG, Mansell MM (1975) Studies on Mammalian ribonucleotide reductase inhibition by pyridoxal phosphate and the dialdehyde derivatives of adenosine, adenosine 5′-monophosphate, and adenosine 5′-triphosphate. Cancer Res 35:390–396

    CAS  PubMed  Google Scholar 

  28. Whiteman M, Spencer JP, Jenner A, Halliwell B (1999) Hypochlorous acid-induced DNA base modification: potentiation by nitrite: biomarkers of DNA damage by reactive oxygen species. Biochem Biophys Res Commun 257(2):572–576. doi:10.1006/bbrc.1999.0448

    Article  CAS  PubMed  Google Scholar 

  29. Whiteman M, Jenner A, Halliwell B (1997) Hypochlorous acid-induced base modifications in isolated calf thymus DNA. Chem Res Toxicol 10(11):1240–1246. doi:10.1021/tx970086i

    Article  CAS  PubMed  Google Scholar 

  30. Whiteman M, Jenner A, Halliwell B (1999) 8-Chloroadenine: a novel product formed from hypochlorous acid-induced damage to calf thymus DNA. Biomarkers 4(4):303–310. doi:10.1080/135475099230831

    Article  CAS  Google Scholar 

  31. Badouard C, Masuda M, Nishino H, Cadet J, Favier A, Ravanat JL (2005) Detection of chlorinated DNA and RNA nucleosides by HPLC coupled to tandem mass spectrometry as potential biomarkers of inflammation. J Chromatogr B 827(1):26–31. doi:10.1016/j.jchromb.2005.03.025

    Article  CAS  Google Scholar 

  32. Hawkins CL, Pattison DI, Davies MJ (2002) Reaction of protein chloramines with DNA and nucleosides: evidence for the formation of radicals, protein-DNA cross-links and DNA fragmentation. Biochem J 365(Pt 3):605–615. doi:10.1042/BJ20020363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hawkins CL, Davies MJ (2002) Hypochlorite-induced damage to DNA, RNA, and polynucleotides: formation of chloramines and nitrogen-centered radicals. Chem Res Toxicol 15(1):83–92

    Article  CAS  PubMed  Google Scholar 

  34. Pattison DI, Davies MJ (2001) Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem Res Toxicol 14(10):1453–1464

    Article  CAS  PubMed  Google Scholar 

  35. Nightingale ZD, Lancha AH Jr, Handelman SK, Dolnikowski GG, Busse SC, Dratz EA, Blumberg JB, Handelman GJ (2000) Relative reactivity of lysine and other peptide-bound amino acids to oxidation by hypochlorite. Free Radic Biol Med 29(5):425–433

    Article  CAS  PubMed  Google Scholar 

  36. Pattison DI, Davies MJ, Hawkins CL (2012) Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids. Free Radic Res 46(8):975–995. doi:10.3109/10715762.2012.667566

    Article  CAS  PubMed  Google Scholar 

  37. Takeshita J, Byun J, Nhan TQ, Pritchard DK, Pennathur S, Schwartz SM, Chait A, Heinecke JW (2006) Myeloperoxidase generates 5-chlorouracil in human atherosclerotic tissue: a potential pathway for somatic mutagenesis by macrophages. J Biol Chem 281(6):3096–3104. doi:10.1074/jbc.M509236200

    Article  CAS  PubMed  Google Scholar 

  38. Henderson JP, Byun J, Takeshita J, Heinecke JW (2003) Phagocytes produce 5-chlorouracil and 5-bromouracil, two mutagenic products of myeloperoxidase, in human inflammatory tissue. J Biol Chem 278(26):23522–23528. doi:10.1074/jbc.M303928200

    Article  CAS  PubMed  Google Scholar 

  39. Asahi T, Kondo H, Masuda M, Nishino H, Aratani Y, Naito Y, Yoshikawa T, Hisaka S, Kato Y, Osawa T (2010) Chemical and immunochemical detection of 8-halogenated deoxyguanosines at early stage inflammation. J Biol Chem 285(12):9282–9291. doi:10.1074/jbc.M109.054213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Valinluck V, Sowers LC (2007) Inflammation-mediated cytosine damage: a mechanistic link between inflammation and the epigenetic alterations in human cancers. Cancer Res 67(12):5583–5586. doi:10.1158/0008-5472.CAN-07-0846

    Article  CAS  PubMed  Google Scholar 

  41. Fox L, Dobersen MJ, Greer S (1983) Incorporation of 5-substituted analogs of deoxycytidine into DNA of herpes simplex virus-infected or -transformed cells without deamination to the thymidine analog. Antimicrob Agents Chemother 23(3):465–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vilpo JA, Vilpo LM (1991) Biochemical mechanisms by which reutilization of DNA 5-methylcytosine is prevented in human cells. Mutat Res 256(1):29–35

    Article  CAS  PubMed  Google Scholar 

  43. Fedeles BI, Freudenthal BD, Yau E, Singh V, Chang SC, Li D, Delaney JC, Wilson SH, Essigmann JM (2015) Intrinsic mutagenic properties of 5-chlorocytosine: a mechanistic connection between chronic inflammation and cancer. Proc Natl Acad Sci USA 112(33):E4571–E4580. doi:10.1073/pnas.1507709112

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sassa A, Kamoshita N, Matsuda T, Ishii Y, Kuraoka I, Nohmi T, Ohta T, Honma M, Yasui M (2013) Miscoding properties of 8-chloro-2′-deoxyguanosine, a hypochlorous acid-induced DNA adduct, catalysed by human DNA polymerases. Mutagenesis 28(1):81–88. doi:10.1093/mutage/ges056

    Article  CAS  PubMed  Google Scholar 

  45. Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS, Hsieh WS, Isaacs WB, Nelson WG (1994) Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci USA 91(24):11733–11737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Valinluck V, Liu P, Kang JI Jr, Burdzy A, Sowers LC (2005) 5-halogenated pyrimidine lesions within a CpG sequence context mimic 5-methylcytosine by enhancing the binding of the methyl-CpG-binding domain of methyl-CpG-binding protein 2 (MeCP2). Nucleic Acids Res 33(9):3057–3064. doi:10.1093/nar/gki612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kang JI Jr, Burdzy A, Liu P, Sowers LC (2004) Synthesis and characterization of oligonucleotides containing 5-chlorocytosine. Chem Res Toxicol 17(9):1236–1244. doi:10.1021/tx0498962

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the grants from the Belgian Fund for Scientific Research (FRS-FNRS, Grant 34553.08 and 2.5018.12), the FER 2007 (Université Libre de Bruxelles), and David and Alice van Buuren Funds. C. Noyon and M. Cortese are research fellows of the FRS-FNRS, C. Delporte is a postdoctoral researcher funded by the FRS-FNRS, and L. Vanhamme is Research Director of the FRS-FNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Van Antwerpen.

Additional information

Caroline Noyon and Thierry Roumeguère have equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 87 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noyon, C., Roumeguère, T., Delporte, C. et al. The presence of modified nucleosides in extracellular fluids leads to the specific incorporation of 5-chlorocytidine into RNA and modulates the transcription and translation. Mol Cell Biochem 429, 59–71 (2017). https://doi.org/10.1007/s11010-016-2936-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2936-2

Keywords

Navigation