Skip to main content

Advertisement

Log in

Modulation of cell death in human colorectal and breast cancer cells through a manganese chelate by involving GSH with intracellular p53 status

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Chemotherapy is central to current treatment modality especially for advanced and metastatic colorectal and breast cancers. Targeting the key molecular events of the neoplastic cells may open a possibility to treat cancer. Although some improvements in understanding of colorectal and breast cancer treatment have been recorded, the involvement of glutathione (GSH) and dependency of p53 status on the modulation of GSH-mediated treatment efficacy have been largely overlooked. Herein, we tried to decipher the underlying mechanism of the action of Mn-N-(2-hydroxyacetophenone) glycinate (MnNG) against differential p53 status bearing Hct116, MCF-7, and MDA-MB-468 cells on the backdrop of intracellular GSH level and reveal the role of p53 status in modulating GSH-dependant abrogation of MnNG-induced apoptosis in these cancer cells. Present study discloses that MnNG targets specifically wild-type-p53 expressing Hct116 and MCF-7 cells by significantly depleting both cytosolic, mitochondrial GSH, and modulating nuclear GSH through Glutathione reductase and Glutamate–cysteine ligase depletion that may in turn induce p53-mediated intrinsic apoptosis in them. Thus GSH addition abrogates p53-mediated apoptosis in wild-type-p53 expressing cells. GSH addition also overrides MnNG-induced modulation of phase II detoxifying parameters in them. However, GSH addition partially replenishes the down-regulated or modulated GSH pool in cytosol, mitochondria, and nucleus, and relatively abrogates MnNG-induced intrinsic apoptosis in p53-mutated MDA-MB-468 cells. On the contrary, although MnNG induces significant cell death in p53-null Hct116 cells, GSH addition fails to negate MnNG-induced cell death. Thus p53 status with intracellular GSH is critical for the modulation of MnNG-induced apoptosis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ABC transporter:

ATP-binding cassette transporter

ATP:

Adenosine triphosphate

BSO:

DL-buthionine (S,R) sulfoximine

CAT:

Catalase

CRC:

Colorectal cancer

Dox:

Doxorubicin

EA:

Ethacrynic acid

EAC/Dox:

Doxorubicin resistant Ehrlich ascites carcinoma

EAC/S:

Doxorubicin sensitive Ehrlich ascites carcinoma

GPx:

Glutathione peroxidase

GST:

Glutathione-S-transferase

GSH:

Reduced glutathione

MnNG:

Manganese N-(2-hydroxy acetophenone) glycinate

MRP:

Multidrug resistance proteins

P-gp:

P-glycoprotein

PFT-α:

Pifithrin-α

SOD:

Superoxide dismutase

References

  1. Couzin J (2002) Cancer drugs. Smart weapons prove tough to design. Science 298:522–525

    Article  CAS  PubMed  Google Scholar 

  2. Frantz S (2005) Drug discovery: playing dirty. Nature 437:942–943

    Article  CAS  PubMed  Google Scholar 

  3. Frantz S (2006) Drug approval triggers debate on future direction for cancer treatments. Nat Rev Drug Discov 5:91

    Article  PubMed  Google Scholar 

  4. Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234

    Article  PubMed  Google Scholar 

  5. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  PubMed  Google Scholar 

  6. Kang YH, Yi MJ, Kim MJ, Park MT, Bae S, Kang CM et al (2004) Caspase-independent cell death by arsenic trioxide in human cervical cancer cells: reactive oxygen species-mediated poly(ADP-ribose) polymerase-1 activation signals apoptosis-inducing factor release from mitochondria. Cancer Res 64:8960–8967

    Article  CAS  PubMed  Google Scholar 

  7. Morales MC, Perez-Yarza G, Nieto-Rementeria N, Boyano MD, Jangi M, Atencia R et al (2005) Intracellular glutathione levels determine cell sensitivity to apoptosis induced by the antineoplastic agent N-(4-hydroxyphenyl) retinamide. Anticancer Res 25:1945–1951

    CAS  PubMed  Google Scholar 

  8. Maeda H, Hori S, Ohizumi H, Segawa T, Kakehi Y, Ogawa O et al (2004) Effective treatment of advanced solid tumors by the combination of arsenic trioxide and L-buthionine-sulfoximine. Cell Death Differ 11:737–746

    Article  CAS  PubMed  Google Scholar 

  9. Anuszewska EL, Gruber BM, Koziorowska JH (1997) Studies on adaptation to adriamycin in cells pretreated with hydrogen peroxide. Biochem Pharmacol 54:597–603

    Article  CAS  PubMed  Google Scholar 

  10. Half E, Arber N (2009) Colon cancer: preventive agents and the present status of chemoprevention. Expert Opin Pharmacother 10:211–219

    Article  CAS  PubMed  Google Scholar 

  11. Tew KD, Dutta S, Schultz M (1997) Inhibitors of glutathione S-transferases as therapeutic agents. Adv Drug Deliv Rev 26:91–104

    Article  CAS  PubMed  Google Scholar 

  12. World Cancer Report (2014) World Health Organization 2014. Chapter 5.2. ISBN 9283204298

  13. Huang ZZ, Chen C, Zeng Z, Yang H, Oh J, Chen L et al (2001) Mechanism and significance of increased glutathione level in human hepatocellular carcinoma and liver regeneration. FASEB J 15:19–21

    PubMed  Google Scholar 

  14. Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–798

    CAS  PubMed  Google Scholar 

  15. Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H et al (2006) Selective killing of oncogenically transformed cells through a ROS mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10:421–452

    Article  Google Scholar 

  16. Canada A, Herman L, Kidd K, Robertson C, Trump D (1993) Glutathione depletion increases the cytotoxicity of melphalan to PC-3 an androgen-insensitive prostate cancer cell line. Cancer Chemother Pharmacol 32:73–77

    Article  CAS  PubMed  Google Scholar 

  17. Armstrong JS, Steinauer KK, Hornung B, Irish JM, Lecane P, Birrell GW et al (2002) Role of glutathione depletion and reactive oxygen species generation in apoptotic signalling in a human B lymphoma cell line. Cell Death Differ 9:252–263

    Article  CAS  PubMed  Google Scholar 

  18. Ozols RF, O’Dwyer PJ, Hamilton TC, Young RC (1990) The role of glutathione in drug resistance. Cancer Treat Rev 17:45–50

    Article  CAS  PubMed  Google Scholar 

  19. Fuertes MA, Alonso C, Perez JM (2003) Biochemical modulation of cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem Rev 103:645–662

    Article  CAS  PubMed  Google Scholar 

  20. Johnston JB, Isrels LG, Goldenberg GJ, Anhalt CD, Verburg L, Mowat MRA et al (1990) Glutathione S-transferase activity, sulfhydryl group and glutathione levels, and DNA cross-linking activity with chlorambucil in chronic lymphocytic leukemia. J Natl Cancer Inst 82:776–779

    Article  CAS  PubMed  Google Scholar 

  21. Powis G, Prough RA (2001) Metabolism and action of anti-cancer drugs. Taylor & Francis, London, p 336

    Google Scholar 

  22. Ranganathan S, Tew KD (1991) Immunohistochemical localization of glutathione S-transferases alpha, mu, and pi in normal tissue and carcinomas from human colon. Carcinogenesis 12:2383–2387

    Article  CAS  PubMed  Google Scholar 

  23. Morse MA (2001) The role of glutathione S-transferase P1-1 in colorectal cancer: friend or foe? Gastroenterology 121:1010–1013

    Article  CAS  PubMed  Google Scholar 

  24. Ebert MN, Beyer-Sehlmeyer G, Liegibel UM, Kautenburger T, Becker TW, Pool-Zobel PL (2001) Butyrate induces glutathione S-transferase in human colon cells and protects from genetic damage by 4-hydroxy-2-nonenal. Nutr Cancer 41:156–164

    Article  CAS  PubMed  Google Scholar 

  25. Wang AL, Tew KD (1985) Increased glutathione-S-transferase activity in a cell line with acquired resistance to nitrogen mustards. Cancer Treat Rep 69:677–682

    CAS  PubMed  Google Scholar 

  26. Freitas I, Baldeiras T, Proença V, Alves A, Mota-Pinto Sarmento-Ribeiro A (2012) Oxidative stress adaptation in aggressive prostate cancer may be counteracted by the reduction of glutathione reductase. FEBS Open Bio 2:119–128

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kramer RA, Schuller HM, Smith AC, Boyd MR (1985) Effects of buthionine sulfoximine on the nephrotoxicity of 1-(2-chlooethyl)-3-(Trans-4-methylcyclohexyl) I - I nitrosourea (MeCCNU). J Pharmacol Exp Ther 234:498–506

    CAS  PubMed  Google Scholar 

  28. Lozano G (2007) The oncogenic roles of p53 mutants in mouse models. Curr Opin Genet Dev 17:66–70

    Article  CAS  PubMed  Google Scholar 

  29. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS et al (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221

    Article  CAS  PubMed  Google Scholar 

  30. Soussi T, Wiman KG (2007) Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell 12:303–312

    Article  CAS  PubMed  Google Scholar 

  31. Lo HW, Stephenson L, Cao X, Milas M, Pollock R, Ali-Osman F (2008) Identification and functional characterization of the human glutathione S-transferase P1 gene as a novel transcriptional target of the p53 tumor suppressor gene. Mol Cancer Res 6:843–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tan M, Li S, Swaroop M, Guan K, Oberley LW, Sun Y (1999) Transcriptional activation of the human glutathione peroxidase promoter by p53. J Biol Chem 274:12061–12066

    Article  CAS  PubMed  Google Scholar 

  33. Ganguly A, Chakraborty P, Banerjee K, Choudhuri SK (2014) The role of a Schiff base scaffold, N-(2-hydroxy acetophenone) glycinate-in overcoming multidrug resistance in cancer. Eur J Pharm Sci 51:96–109

    Article  CAS  PubMed  Google Scholar 

  34. Ghosh RD, Banerjee K, Das S, Ganguly A, Chakraborty P, Sarkar A et al (2013) A novel manganese complex, Mn-(II) N-(2-hydroxy acetophenone) glycinate overcomes multidrug-resistance in cancer. Eur J Pharm Sci 49:737–747

    Article  CAS  PubMed  Google Scholar 

  35. Majumder S, Panda GS, Choudhuri SK (2003) Synthesis, characterization and biological properties of a novel copper complex. Eur J Med Chem 38:893–898

    Article  CAS  PubMed  Google Scholar 

  36. Mookerjee A, Mookerjee-Basu J, Majumder S, Chatterjee S, Panda GS, Dutta P et al (2006) A novel copper complex induces ROS generation in doxorubicin resistant Ehrlich ascitis carcinoma cells and increases activity of antioxidant enzymes in vital organs in vivo. BMC Cancer 6:267–277

    Article  PubMed  PubMed Central  Google Scholar 

  37. Banerjee K, Ganguly A, Chakraborty P, Sarkar A, Singh S, Chatterjee M et al (2014) ROS and RNS induced apoptosis through p53 and iNOS mediated pathway by a dibasic hydroxamic acid molecule in leukemia cells. Eur J Pharm Sci 52:146–164

    Article  CAS  PubMed  Google Scholar 

  38. White CC, Viernes H, Krejsa CM, Botta D, Kavanagh TJ (2003) Fluorescence-based microtiter plate assay for glutamate–cysteine ligase activity. Anal Biochem 318:175–180

    Article  CAS  PubMed  Google Scholar 

  39. Mulherin DM, Thurnham DI, Situnayake RD (1996) Glutathione reductase activity, riboflavin status, and disease activity in rheumatoid arthritis. Ann Rheum Dis 55:837–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ganguly A, Basu S, Banerjee K, Chakraborty P, Sarkar A, Chatterjee M et al (2011) Redox active copper chelate overcomes multidrug resistance in T-Lymphoblastic leukemia cell by triggering apoptosis. Mol BioSyst 7:1701–1712

    Article  CAS  PubMed  Google Scholar 

  41. Andrews NC, Faller DVA (1991) A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res 19:2499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Habig WH, Pabst MJ, Jacoby WB (1974) Glutathione-S-transferase, the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  43. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidise. J Lab Clin Med 70:158–169

    CAS  PubMed  Google Scholar 

  44. Luck H (1963) A spectrophotometric method for estimation of catalase. In: Bergmeyer HV (ed) Methods of enzymatic analysis. Academic Press, New York, pp 886–888

    Google Scholar 

  45. Chatterjee S, Chakraborty P, Banerjee K, Sinha A, Adhikary A, Das T et al (2013) Selective induction of apoptosis in various cancer cells irrespective of drug sensitivity through a copper chelate, copper N-(2 hydroxy acetophenone) glycinate: crucial involvement of glutathione. Biometals 26:517–534

    Article  CAS  PubMed  Google Scholar 

  46. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  CAS  PubMed  Google Scholar 

  47. Zimmermann AK, Loucks FA, Schroeder EK, Bouchard RJ, Tyler KL, Linseman DA (2007) Glutathione binding to the Bcl-2 homology-3 domain groove: a molecular basis for Bcl-2 antioxidant function at mitochondria. J Biol Chem 282:29296–29304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Thiruchelvam M, Prokopenko O, Cory-Slechta DA, Richfield EK, Buckley B, Mirochnitchenko O (2005) Overexpression of superoxide dismutase or glutathione peroxidise protects against the paraquat þ maneb-induced Parkinson disease phenotype. J Biol Chem 280:22530–22539

    Article  CAS  PubMed  Google Scholar 

  49. Li JJ, Oberley LW, St Clair DK, Ridnour LA, Oberley TD (1995) Phenotypic changes induced in human breast cancer cells by overexpression of manganese-containing superoxide dismutase. Oncogene 10:1989–2000

    CAS  PubMed  Google Scholar 

  50. Behrend L, Mohr A, Dick T, Zwacka RM (2005) Manganese superoxide dismutase induces p53-dependent senescence in colorectal cancer cells. Mol Cell Biol 25:7758–7769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Meplan C, Richanrd MJ, Hainaut P (2000) Redox signalling and transition metals in the control of the p53 pathway. Biochem Pharmacol 59:25–33

    Article  CAS  PubMed  Google Scholar 

  52. Jeffers JR, Parganas E, Lee Y, Yang C, Wang JL, Brennan J et al (2003) Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4:321–328

    Article  CAS  PubMed  Google Scholar 

  53. Lowe SW, Lin AW (2000) Apoptosis in cancer. Carcinogenesis 21:485–495

    Article  CAS  PubMed  Google Scholar 

  54. Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284:805–808

    Article  CAS  PubMed  Google Scholar 

  55. Cho HY, Reddy SP, Kleeberger SR (2006) Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal 8:76–87

    Article  CAS  PubMed  Google Scholar 

  56. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  CAS  PubMed  Google Scholar 

  57. Schneider E, Yamazaki H, Sinha BK, Cowan KH (1995) Buthionine sulphoximine-mediated sensitisation of etoposide resistant human breast cancer MCF7 cells overexpressing the multidrug resistance-associated protein involves increased drug accumulation. Br J Cancer 71:738–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rhodes T, Twentyman PR (1992) A study of ethacrynic acid as a potential modifier of melphalan and cisplatin sensitivity in human lung cancer parental and drug-resistant cell lines. Br J Cancer 65:684–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu HY, Kang YJ (1998) Inhibition of buthionine sulfoximine enhanced doxorubicin toxicity in metallothionein overexpressing transgenic mouse heart. J Pharmacol Exp Ther 287:515–520

    CAS  PubMed  Google Scholar 

  60. Elo H (1987) Reaction of the antiproliferative and antineoplastic agent trans bis(salicylaldoximato)copper(II) and related chelates with glutathione and cysteine. Correlation between reactivity and biological activity. Inorg Chim Acta 136:L33–L35

    Article  CAS  Google Scholar 

  61. Kalo E, Kogan-Sakin I, Solomon H, Bar-Nathan E, Shay M, Shetzer Y et al (2012) Mutant p53R273H attenuates the expression of phase 2 detoxifying enzymes and promotes the survival of cells with high levels of reactive oxygen species. J Cell Sci 125:5578–5586

    Article  CAS  PubMed  Google Scholar 

  62. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O et al (2006) p53 regulates mitochondrial respiration. Science 312:1650–1653

    Article  CAS  PubMed  Google Scholar 

  63. Jedlitschky G, Leier I, Buchholz U, Center M, Keppler D (1994) ATP-dependent transport of glutathione S-conjugates by the multidrug resistance-associated protein. Cancer Res 54:4833–4836

    CAS  PubMed  Google Scholar 

  64. Stambolsky P, Tabach Y, Fontemaggi G, Weisz L, Maor-Aloni R, Siegfried Z et al (2010) Modulation of the vitamin D3 response by cancer-associated mutant p53. Cancer Cell 17:273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kume S, Haneda M, Kanasaki K, Sugimoto T, Araki S, Isono M et al (2006) Silent information regulator 2 (SIRT1) attenuates oxidative stress-induced mesangial cell apoptosis via p53 deacetylation. Free Radic Biol Med 40:2175–2182

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This investigation received financial support from the Council of Scientific and Industrial Research (CSIR), New Delhi, No. 09/030/(0069)/2012 EMR-I and Indian Council of Medical Research (ICMR), New Delhi, No. 74/10/2014-PERS. (EMS). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author contributions

Conceived and designed the experiments: SKC, KB. Performed the experiments: KB, SD. Analyzed the data: KB. Contributed reagents/materials/analysis tools: SM, SM, JB. Wrote the paper: KB, SKC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumitra Kumar Choudhuri.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2016_2896_MOESM1_ESM.tif

Supplementary Fig. 1: MnNG does not induce extrinsic apoptosis in differential p53 status bearing cancer cells. (A) Hct116 p53WT and Hct116 p53−/− cells were either treated with MnNG (0.8 µM) or treated with rIFN-γ for indicated time were labeled with anti FasR antibody. Immunofluorescence analysis was performed by flow cytometry.. Similarly, (B) both MCF-7 p53WT and MDA-MB-468 p53Mut cells were either treated with MnNG or treated with rIFN-γ for indicated time periods were labeled with anti FasR antibody. Here we also represent the data of three independent experiments. Supplementary material 1 (TIFF 3360 kb)

Appendix: Materials and methods for Supplementary Fig. 1

Appendix: Materials and methods for Supplementary Fig. 1

Determination of FasR expression by Facs analysis

CD95 and FasR expression of cancer cells were assessed following MnNG treatment. Appropriate untreated (MnNG untreated) and positive (human recombinant IFN-γ treated) controls were maintained for comparison. After drug (MnNG) and IFN-γ treatment, cancer cells were rinsed twice with PBS and were incubated with anti FasR primary antibody at room temperature (RT) for 45 min. Following incubation, cells were washed thrice with PBS and then with 3% FBS. Cells were then incubated with FITC-conjugated secondary antibody at RT for 30 min. Negative controls were incubated with secondary antibodies only. Final volume was adjusted to 500 ml with PBS, and labeling was analyzed by flow cytometry by using a FACS or fluorescence-activated cell sorter and CELLQuest software (BD Biosciences, San Jose, CA). A minimum of 104 cells were counted for each sample. The gate was set to exclude approximately 99.5% of the negative control cells. At least duplicate independent measurements of the effects of each treatment were performed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, K., Das, S., Majumder, S. et al. Modulation of cell death in human colorectal and breast cancer cells through a manganese chelate by involving GSH with intracellular p53 status. Mol Cell Biochem 427, 35–58 (2017). https://doi.org/10.1007/s11010-016-2896-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2896-6

Keywords

Navigation