Skip to main content
Log in

The effects of zofenopril on cardiac function and pro-oxidative parameters in the streptozotocin-induced diabetic rat heart

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a chronic condition that continues to increase in both incidence and prevalence. Renin–Angiotensin–Aldosterone System is one of the main modulators of chronic hyperglycaemia and, thus, its influence on tissues. Hyperglycaemia-induced oxidative stress is an important factor in diabetic cardiomyopathy. The present study was carried out on 24 adult male Wistar albino rats (8-week-old and with body masses of 190 ± 10 g). We evaluated the influence of acute administration of zofenopril on ex vivo myocardial function from rats with streptozotocin-induced diabetes mellitus, with a special emphasis on cardiodynamic and oxidative stress parameters in diabetic rat hearts. Rats were divided randomly into two groups (12 animals per group): control non-diabetic animals (C) were healthy rats perfused with 1.5 µM of zofenopril, and STZ-treated diabetic animals (DM) were diabetic animals perfused with 1.5 µM of zofenopril 4 weeks after the induction of diabetes. Our results demonstrated that diabetic rats are characterized by a depressed cardiac performance and that oxidative markers are related to alterations in cardiac function in rats with 4 weeks of STZ-induced diabetes. Additionally, the use of zofenopril as a monotherapy slightly diminished cardiac damage induced by chronic hyperglycaemia. However, long-term follow-up intervention trials are necessary to fully demonstrate the benefit of zofenopril in this context. A challenge for future investigations will be to identify the effects of chronic administration or combination therapy with angiotensin-converting enzyme inhibitors in various models of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

LV:

Left ventricle

RV:

Right ventricle

HR:

Heart rate

CPP:

Coronary perfusion pressure

CF:

Coronary flow

SEM:

Standard error mean

SD:

Standard deviation

DM:

Diabetes mellitus

CAD:

Coronary artery disease

HF:

Heart failure

RAAS:

Renin–angiotensin system

ATII:

Angiotensin II

AT1:

Angiotensin II receptor type 1

ACE:

Angiotensin-converting enzyme

ACEI:

Angiotensin-converting enzymes inhibitor

ARBs:

Angiotensin II receptor blockers

ACE2:

Angiotensin-converting enzyme 2

PLB:

Phospholamban

SERCA:

Sarcoplasmic reticulum Ca2+ ATP-ase

STZ:

Streptozotocin

SH:

Sulfhydryl group

dp/dt max:

Maximum rate of pressure development in LV

dp/dt min:

Minimum rate of pressure development in LV

SLVP:

Systolic left ventricle pressure

DLVP:

Diastolic left ventricle pressure

HR:

Heart rate

CF:

Coronary flow

ROS:

Reactive oxygen species

NO2 :

Nitrites

NO:

Nitric oxide

NOS:

Nitric oxide synthetase

iNOS:

Inducible nitric oxide synthetase

·ONOO :

Peroxynitrite

O2−:

Superoxide anion radicals

H2O2 :

Hydrogen peroxide

TBARS:

Reactive thiobarbituric substances

BP:

Blood pressure

References

  1. Lim HS, MacFadyen RJ, Lip GY (2004) Diabetes mellitus, the renin–angiotensin–aldosterone system and the heart. Arch Intern Med 164(16):1737–1748

    Article  CAS  PubMed  Google Scholar 

  2. Singh VP, Le B, Khode R, Baker KM, Kumar R (2008) Intracellular angiotensin II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Diabetes 57(12):3297–3306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kumar R, Yong QC, Thomas CM, Baker KM (2012) Intracardiac intracellular angiotensin system in diabetes. Am J Physiol Regul Integr Comp Physiol 302(5):R510–R517

    Article  CAS  PubMed  Google Scholar 

  4. Jia G, DeMarco VG, Sowers JR (2016) Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol 12(3):144–153

    Article  CAS  PubMed  Google Scholar 

  5. Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, Dagenais G, Sleight P, Anderson C, ONTARGET Investigators (2008) Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 358(15):1547–1559

    Article  CAS  PubMed  Google Scholar 

  6. Parving HH, Brenner BM, McMurray JJ, de Zeeuw D, Haffner SM, Solomon SD, Chaturvedi N, Persson F, Desai AS, Nicolaides M, Richard A, Xiang Z, Brunel P, Pfeffer MA, ALTITUDE Investigators (2012) Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med 367(23):2204–2213

    Article  CAS  PubMed  Google Scholar 

  7. Fried LF, Emanuele N, Zhang JH, Brophy M, Conner TA, Duckworth W, Leehey DJ, McCullough PA, O’Connor T, Palevsky PM, Reilly RF, Seliger SL, Warren SR, Watnick S, Peduzzi P, Guarino P, VA, NEPHRON-D Investigators (2013) Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med 369(20):1892–1903

    Article  CAS  PubMed  Google Scholar 

  8. Makani H, Bangalore S, Desouza KA, Shah A, Messerli FH (2013) Efficacy and safety of dual blockade of the renin-angiotensin system: meta-analysis of randomized trials. BMJ 28(346):f360

    Article  Google Scholar 

  9. Barbato JC, Mulrow PJ, Shapiro JI, Franco-Saenz R (2002) Rapid effects of aldosterone and spironolactone in the isolated working rat heart. Hypertension 40(2):130–135

    Article  CAS  PubMed  Google Scholar 

  10. Lijnen PJ, van Pelt JF, Fagard RH (2012) Stimulation of reactive oxygen species and collagen synthesis by angiotensin II in cardiac fibroblasts. Cardiovasc Ther 30(1):e1–e8

    Article  CAS  PubMed  Google Scholar 

  11. Carnicelli V, Frascarelli S, Zucchi R (2011) Effect of acute and chronic zofenopril administration on cardiac gene expression. Mol Cell Biochem 352(1–2):301–307

    Article  CAS  PubMed  Google Scholar 

  12. Zhong Y, Ahmed S, Grupp IL, Matlib MA (2001) Altered SR protein expression associated with contractile dysfunction in diabetic rat hearts. Am J Physiol Heart Circ Physiol 281(3):H1137–H1147

    CAS  PubMed  Google Scholar 

  13. Vasanji Z, Dhalla NS, Netticadan T (2004) Increased inhibition of SERCA2 by phospholamban in the type I diabetic heart. Mol Cell Biochem 261(1–2):245–249

    Article  CAS  PubMed  Google Scholar 

  14. Dhalla NS, Rangi S, Zieroth S, Xu YJ (2012) Alterations in sarcoplasmic reticulum and mitochondrial functions in diabetic cardiomyopathy. Exp Clin Cardiol 17(3):115–120

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Subissi A, Evangelista S, Giachetti A (1999) Preclinical profile of zofenopril: an angiotensin converting enzyme inhibitor with peculiar cardioprotective properties. Cardiovasc Drug Rev 17(2):115–133

    Article  CAS  Google Scholar 

  16. Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115(25):3213–3223

    Article  PubMed  Google Scholar 

  17. Münzel T, Gori T, Keaney JF Jr, Maack C, Daiber A (2015) Pathophysiological role of oxidative stress in systolic and diastolic heart failure and its therapeutic implications. Eur Heart J 36(38):2555–2564

    Article  PubMed  Google Scholar 

  18. DeForrest JM, Waldron TL, Krapcho J, Turk C, Rubin B, Powell JR, Cushman DW, Petrillo EW (1989) Preclinical pharmacology of zofenopril, an inhibitor of angiotensin I converting enzyme. J Cardiovasc Pharmacol 13(6):887–894

    Article  CAS  PubMed  Google Scholar 

  19. Tesch GH, Allen TJ (2007) Rodent models of streptozotocin-induced diabetic nephropathy. Nephrology 12:261–266

    Article  PubMed  Google Scholar 

  20. Auclair C, Voisin E (1985) Nitroblue tetrazolium reduction. In: Greenwald RA (ed) CRC handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 123–132

    Google Scholar 

  21. Green LC, Wagnwr DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite and (15 N) nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  22. Pick E, Keisari Y (1980) A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods 38:161–170

    Article  CAS  PubMed  Google Scholar 

  23. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  24. Ambrosioni E (2007) Defining the role of zofenopril in the management of hypertension and ischemic heart disorders. Am J Cardiovasc Drugs 7(1):17–24

    Article  CAS  PubMed  Google Scholar 

  25. Working Party of the International Diabetes Federation (European Region) (2003) Hypertension in people with type 2 diabetes: knowledge-based diabetes-specific guidelines. Diabet Med 20:972–987

    Article  Google Scholar 

  26. Ganguly PK, Pierce GN, Dhalla KS, Dhalla NS (1983) Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am J Physiol 244(6):E528–E535

    CAS  PubMed  Google Scholar 

  27. Zhao XY, Hu SJ, Li J, Mou Y, Chen BP, Xia Q (2006) Decreased cardiac sarcoplasmic reticulum Ca2+-ATPase activity contributes to cardiac dysfunction in streptozotocin-induced diabetic rats. J Physiol Biochem 62(1):1–8

    Article  CAS  PubMed  Google Scholar 

  28. Schaffer SW (1991) Cardiomyopathy associated with noninsulin-dependent diabetes. Mol Cell Biochem 107(1):1–20

    Article  CAS  PubMed  Google Scholar 

  29. Penpargkul S, Fein F, Sonnenblick EH, Scheuer J (1981) Depressed cardiac sarcoplasmic reticular function from diabetic rats. J Mol Cell Cardiol 13(3):303–309

    Article  CAS  PubMed  Google Scholar 

  30. Howarth FC, Al-Sharhan R, Al-Hammadi A, Qureshi MA (2007) Effects of streptozotocin-induced diabetes on action potentials in the sinoatrial node compared with other regions of the rat heart. Mol Cell Biochem 300(1–2):39–46

    Article  CAS  PubMed  Google Scholar 

  31. Dhalla NS, Das PK, Sharma GP (1978) Subcellular basis of cardiaccontractile failure. J Mol Cell Cardiol 10:363–385

    Article  CAS  PubMed  Google Scholar 

  32. Nagareddy PR, Xia Z, McNeill JH, MacLeod KM (2005) Increased expression of iNOS is associated with endothelial dysfunction and impaired pressor responsiveness in streptozotocin-induced diabetes. Am J Physiol Heart Circ Physiol 289(5):H2144–H2152

    Article  CAS  PubMed  Google Scholar 

  33. Khanna S, Singh GB, Khullar M (2014) Nitric oxide synthases and diabetic cardiomyopathy. Nitric Oxide 1(43):29–34

    Article  Google Scholar 

  34. West MB, Ramana KV, Kaiserova K, Srivastava SK, Bhatnagar A (2008) l-Arginine prevents metabolic effects of high glucose in diabetic mice. FEBS Lett 582(17):2609–2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oudit GY, Kassiri Z, Patel MP, Chappell M, Butany J, Backx PH, Tsushima RG, Scholey JW, Khokha R, Penninger JM (2007) Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovasc Res 75(1):29–39

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Lj. Jakovljevic.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ristic, P., Srejovic, I., Nikolic, T. et al. The effects of zofenopril on cardiac function and pro-oxidative parameters in the streptozotocin-induced diabetic rat heart. Mol Cell Biochem 426, 183–193 (2017). https://doi.org/10.1007/s11010-016-2890-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2890-z

Keywords

Navigation