Skip to main content

Advertisement

Log in

Differential behaviors of trastuzumab-sensitive and -resistant SKBR3 cells treated with menadione reveal the involvement of Notch1/Akt/FOXO1 signaling elements

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Given that HER2 serves as a putative target for therapy in HER2-positive breast cancer, intrinsic and/or acquired resistance to trastuzumab (T) has been proposed to be the major obstacle in treatments. In addition, chemoresistance is commonly attributed to increased antioxidant capacity. In that regard, we evaluated the effect of menadione (M) alone and/or its combination with trastuzumab on proliferation, intracellular GSH and ROS contents as well as HER2 and Notch1 signaling pathways in both trastuzumab-resistant (SKBR3R) and -sensitive SKBR3 (SKBR3S) cells. In spite of increased level of ROS and reduced level of GSH in M-treated SKBR3S cells, M-treated SKBR3R cells showed a decreased content of ROS and GSH compared to untreated cells. However, M/T co-treatment of SKBR3 cells indicated no effect on ROS content, while decreased the level of GSH compared to untreated control cells. Based on the extent of apoptosis, colony formation and wound healing assays, M alone, and/or in combination with T had a stronger inhibitory effect on proliferation of SKBR3R cells relative to SKBR3S cells. These effects might be due to the stronger effects of M and/or M/T on downregulation of p-Akt, Hes1, NICD, and upregulation of FOXO1 among SKBR3R cells relative to the sensitive SKBR3 cells. These findings would certainly shed light on some of the signaling factors involved in induction of trastuzumab resistance and would be of value in designing more efficient chemosensitization strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DMSO:

Dimethyl sulfoxide

DCFH:

2′,7′-Dichlorofluorescein diacetate

DTT:

Dithiothreitol

AO/EtBr:

Acridine orange/Ethidium bromide

GSH:

Reduced Glutathione

MCF-7:

Human breast cancer cell line

M:

Menadione

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NAC:

N-Acetylcysteine

NICD:

Notch1 intracellular domain

PMS:

Phenazine methosulphate

ROS:

Reactive oxygen species

R or SKBR3R :

Trastuzumab-resistant SKBR3 cells

S or SKBR3S :

Trastuzumab-sensitive SKBR3 cells

T:

Trastuzumab

T/M:

Trastuzumab/menadione combination

References

  1. Sørlie T et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci 98(19):10869–10874

    Article  PubMed Central  PubMed  Google Scholar 

  2. Eroles P et al (2012) Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat Rev 38(6):698–707

    Article  CAS  PubMed  Google Scholar 

  3. Nahta R, Esteva FJ (2006) Herceptin: mechanisms of action and resistance. Cancer Lett 232(2):123–138

    Article  CAS  PubMed  Google Scholar 

  4. Romond EH et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353(16):1673–1684

    Article  CAS  PubMed  Google Scholar 

  5. Buzdar AU et al (2005) Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. J Clin Oncol 23(16):3676–3685

    Article  CAS  PubMed  Google Scholar 

  6. Nahta R et al (2006) Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol 3(5):269–280

    Article  CAS  PubMed  Google Scholar 

  7. Osipo C et al (2008) ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a γ-secretase inhibitor. Oncogene 27(37):5019–5032

    Article  CAS  PubMed  Google Scholar 

  8. Krebs LT et al (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14(11):1343–1352

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Wang J et al (2011) Notch1 is involved in migration and invasion of human breast cancer cells. Oncol Rep 26(5):1295

    CAS  PubMed  Google Scholar 

  10. Simmons MJ et al (2012) NOTCH1 inhibition in vivo results in mammary tumor regression and reduced mammary tumorsphere-forming activity in vitro. Breast Cancer Res 14(5):R126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kim TH et al (2014) Silibinin induces cell death through reactive oxygen species-dependent downregulation of Notch-1/ERK/Akt signaling in human breast cancer cells. J Pharmacol Exp Ther 349(2):268–278

    Article  PubMed  Google Scholar 

  12. Benhar M, Engelberg D, Levitzki A (2002) ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep 3(5):420–425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival*. J Cell Physiol 192(1):1–15

    Article  CAS  PubMed  Google Scholar 

  14. Poli G et al (2004) Oxidative stress and cell signalling. Curr Med Chem 11(9):1163–1182

    Article  CAS  PubMed  Google Scholar 

  15. Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updates 7(2):97–110

    Article  CAS  Google Scholar 

  16. Matsura T et al (1999) Hydrogen peroxide-induced apoptosis in HL-60 cells requires caspase-3 activation. Free Radical Res 30(1):73–83

    Article  CAS  Google Scholar 

  17. Yamakawa H et al (2000) Activation of caspase-9 and-3 during H2O2-induced apoptosis of PC12 cells independent of ceramide formation. Neurol Res 22(6):556–564

    CAS  PubMed  Google Scholar 

  18. Yokomizo A et al (1995) Cellular levels of thioredoxin associated with drug sensitivity to cisplatin, mitomycin C, doxorubicin, and etoposide. Cancer Res 55(19):4293–4296

    CAS  PubMed  Google Scholar 

  19. Tareen B et al (2008) A 12 week, open label, phase I/IIa study using Apatone® for the treatment of prostate cancer patients who have failed standard therapy. Int J Med Sci 5(2):62

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Akiyoshi T et al (2009) The potential of vitamin K3 as an anticancer agent against breast cancer that acts via the mitochondria-related apoptotic pathway. Cancer Chemother Pharmacol 65(1):143–150

    Article  CAS  PubMed  Google Scholar 

  21. Liao W, Wu F, Wu C (2000) Binary/ternary combined effects of vitamin K3 with other antitumor agents in nasopharyngeal carcinoma CG1 cells. Int J Oncol 17(2):323–331

    CAS  PubMed  Google Scholar 

  22. Margolin KA et al (1995) Phase I study of mitomycin C and menadione in advanced solid tumors. Cancer Chemother Pharmacol 36(4):293–298

    Article  CAS  PubMed  Google Scholar 

  23. Tetef M et al (1995) Mitomycin C and menadione for the treatment of lung cancer: a phase II trial. Invest New Drugs 13(2):157–162

    Article  CAS  PubMed  Google Scholar 

  24. Vistica DT et al (1991) Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res 51(10):2515–2520

    CAS  PubMed  Google Scholar 

  25. Chou T-C, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  CAS  PubMed  Google Scholar 

  26. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2’, 7’-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5(2):227–231

    Article  CAS  PubMed  Google Scholar 

  27. Meshkini A, Yazdanparast R (2008) Involvement of ERK/MAPK pathway in megakaryocytic differentiation of K562 cells induced by 3-hydrogenkwadaphnin. Toxicol In Vitro 22(6):1503–1510

    Article  CAS  PubMed  Google Scholar 

  28. Liang K et al (2003) Sensitization of breast cancer cells to radiation by trastuzumab. Mol Cancer Ther 2(11):1113–1120

    CAS  PubMed  Google Scholar 

  29. Lowry OH et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  30. Kinnula VL, Crapo JD (2004) Superoxide dismutases in malignant cells and human tumors. Free Radic Biol Med 36(6):718–744

    Article  CAS  PubMed  Google Scholar 

  31. Estrela JM, Ortega A, Obrador E (2006) Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43(2):143–181

    Article  CAS  PubMed  Google Scholar 

  32. Fang J, Nakamura H, Iyer A (2007) Tumor-targeted induction of oxystress for cancer therapy. J Drug Target 15(7–8):475–486

    Article  CAS  PubMed  Google Scholar 

  33. Timolati F et al (2006) Neuregulin-1 beta attenuates doxorubicin-induced alterations of excitation–contraction coupling and reduces oxidative stress in adult rat cardiomyocytes. J Mol Cell Cardiol 41(5):845–854

    Article  CAS  PubMed  Google Scholar 

  34. Gordon LI et al (2009) Blockade of the erbB2 receptor induces cardiomyocyte death through mitochondrial and reactive oxygen species-dependent pathways. J Biol Chem 284(4):2080–2087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Dogan I et al (2011) Inhibition of ErbB2 by herceptin reduces viability and survival, induces apoptosis and oxidative stress in Calu-3 cell line. Mol Cell Biochem 347(1–2):41–51

    Article  CAS  PubMed  Google Scholar 

  36. Aird KM et al (2012) ErbB1/2 tyrosine kinase inhibitor mediates oxidative stress-induced apoptosis in inflammatory breast cancer cells. Breast Cancer Res Treat 132(1):109–119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Victorino VJ et al (2014) Overexpression of HER-2/neu protein attenuates the oxidative systemic profile in women diagnosed with breast cancer. Tumor Biol 35(4):3025–3034

    Article  CAS  Google Scholar 

  38. Seidman AD et al (2001) Weekly trastuzumab and paclitaxel therapy for metastatic breast cancer with analysis of efficacy by HER2 immunophenotype and gene amplification. J Clin Oncol 19(10):2587–2595

    CAS  PubMed  Google Scholar 

  39. Raff JP et al (2004) Phase II study of weekly docetaxel alone or in combination with trastuzumab in patients with metastatic breast cancer. Clin Breast Cancer 4(6):420–427

    Article  CAS  PubMed  Google Scholar 

  40. Boonstra J, Post JA (2004) Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 337:1–13

    Article  CAS  PubMed  Google Scholar 

  41. Kim S-J et al (2005) Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic β-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression. J Biol Chem 280(23):22297–22307

    Article  CAS  PubMed  Google Scholar 

  42. Boreddy SR, Pramanik KC, Srivastava SK (2011) Pancreatic tumor suppression by benzyl isothiocyanate is associated with inhibition of PI3 K/AKT/FOXO pathway. Clin Cancer Res 17(7):1784–1795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Chakrabarty A et al (2013) Trastuzumab-resistant cells rely on a HER2-PI3 K-FoxO-survivin axis and are sensitive to PI3K inhibitors. Cancer Res 73(3):1190–1200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Mittal S et al (2009) Cooperation of Notch and Ras/MAPK signaling pathways in human breast carcinogenesis. Mol Cancer 8(1):128

    Article  PubMed Central  PubMed  Google Scholar 

  45. Efferson CL et al (2010) Downregulation of Notch pathway by a γ-secretase inhibitor attenuates AKT/mammalian target of rapamycin signaling and glucose uptake in an ERBB2 transgenic breast cancer model. Cancer Res 70(6):2476–2484

    Article  CAS  PubMed  Google Scholar 

  46. Meurette O et al (2009) Notch activation induces Akt signaling via an autocrine loop to prevent apoptosis in breast epithelial cells. Cancer Res 69(12):5015–5022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support of this investigation by the Research Council of University of Tehran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razieh Yazdanparast.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajadimajd, S., Yazdanparast, R. Differential behaviors of trastuzumab-sensitive and -resistant SKBR3 cells treated with menadione reveal the involvement of Notch1/Akt/FOXO1 signaling elements. Mol Cell Biochem 408, 89–102 (2015). https://doi.org/10.1007/s11010-015-2485-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2485-0

Keywords

Navigation