Skip to main content
Log in

Activator of G protein signaling 3 forms a complex with resistance to inhibitors of cholinesterase-8A without promoting nucleotide exchange on Gαi3

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Activator of G protein signaling 3 (AGS3) is a guanine nucleotide dissociation inhibitor (GDI) which stabilizes the Gαi/o subunits as an AGS3/Gαi/o-GDP complex. It has recently been demonstrated in reconstitution experiments that the AGS3/Gαi/o-GDP complex may act as a substrate of resistance to inhibitors of cholinesterase 8A (Ric-8A), a guanine exchange factor (GEF) for heterotrimeric Gα proteins. Since the ability of Ric-8A to activate Gαi/o subunits that are bound to AGS3 in a cellular environment has not been confirmed, we thus examined the effect of Ric-8A on cAMP accumulation in HEK293 cells expressing different forms of AGS3 and Gαi3. Co-immunoprecipitation assays indicate that full-length AGS3 and its N- and C-terminal truncated mutants can interact with Ric-8A in HEK293 cells. Yeast two-hybrid assay further confirmed that Ric-8A can directly bind to AGS3S, a short form of AGS3 which is endogenously expressed in heart. However, Ric-8A failed to facilitate Gαi-induced suppression of adenylyl cyclase, suggesting that it may not serve as a GEF for AGS3/Gαi/o-GDP complex in a cellular environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cismowski MJ, Takesono A, Ma C, Lizano JS, Xie X, Fuernkranz H, Lanier SM, Duzic E (1999) Genetic screens in yeast to identify mammalian nonreceptor modulators of G-protein signaling. Nat Biotechnol 17:878–883. doi:10.1038/12867

    Article  CAS  PubMed  Google Scholar 

  2. Takesono A, Cismowski MJ, Ribas C, Bernard M, Chung P, Hazard S, Duzic E, Lanier SM (1999) Receptor-independent activators of heterotrimeric G-protein signaling pathways. J Biol Chem 274:33202–33205

    Article  CAS  PubMed  Google Scholar 

  3. Blumer JB, Smrcka AV, Lanier SM (2007) Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling. Pharmacol Ther 113:488–506. doi:10.1016/j.pharmthera.2006.11.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. De Vries L, Fischer T, Tronchère H, Brothers GM, Strockbine B, Siderovski DP, Farquhar MG (2000) Activator of G protein signaling 3 is a guanine dissociation inhibitor for Gαi subunits. Proc Natl Acad Sci USA 97:14364–14369. doi:10.1073/pnas.97.26.14364

    Article  PubMed Central  PubMed  Google Scholar 

  5. Natochin M, Lester B, Peterson YK, Bernard ML, Lanier SM, Artemyev NO (2000) AGS3 inhibits GDP dissociation from Gα subunits of the Gi family and rhodopsin-dependent activation of transducin. J Biol Chem 275:40981–40985. doi:10.1074/jbc.M006478200

    Article  CAS  PubMed  Google Scholar 

  6. Kimple RJ, De Vries L, Tronchère H, Behe CI, Morris RA, Farquhar MG, Siderovski DP (2001) RGS12 and RGS14 GoLoco motifs are Gαi interaction sites with guanine nucleotide dissociation inhibitor activity. J Biol Chem 276:29275–29281. doi:10.1074/jbc.M103208200

    Article  CAS  PubMed  Google Scholar 

  7. Pizzinat N, Takesono A, Lanier SM (2001) Identification of a truncated form of the G-protein regulator AGS3 in heart that lacks the tetratricopeptide repeat domains. J Biol Chem 276:16601–16610. doi:10.1074/jbc.M007573200

    Article  CAS  PubMed  Google Scholar 

  8. Cismowski MJ (2006) Non-receptor activators of heterotrimeric G-protein signaling (AGS proteins). Semin Cell Dev Biol 17:334–344. doi:10.1016/j.semcdb.2006.03.003

    Article  CAS  PubMed  Google Scholar 

  9. Tse MK, Wong YH (2013) Neuronal functions of activators of G protein signaling. Neurosignals 21:259–271. doi:10.1159/000337263

    Article  CAS  PubMed  Google Scholar 

  10. Tall GG, Krumins AM, Gilman AG (2003) Mammalian Ric-8A (synembryn) is a heterotrimeric Gα protein guanine nucleotide exchange factor. J Biol Chem 278:8356–8362. doi:10.1074/jbc.M211862200

    Article  CAS  PubMed  Google Scholar 

  11. Tõnissoo T, Meier R, Talts K, Plaas M, Karis A (2003) Expression of ric-8 (synembryn) gene in the nervous system of developing and adult mouse. Gene Expr Patterns 3:591–594

    Article  PubMed  Google Scholar 

  12. Hinrichs MV, Torrejón M, Montecino M, Olate J (2012) Ric-8: different cellular roles for a heterotrimeric G-protein GEF. J Cell Biochem 113:2797–2805. doi:10.1002/jcb.24162

    Article  CAS  PubMed  Google Scholar 

  13. Thomas CJ, Tall GG, Adhikari A, Sprang SR (2008) Ric-8A catalyzes guanine nucleotide exchange on Gαi1 bound to the GPR/GoLoco exchange inhibitor AGS3. J Biol Chem 283:23150–23160. doi:10.1074/jbc.M802422200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hofler C, Koelle MR (2011) AGS-3 alters Caenorhabditis elegans behavior after food deprivation via RIC-8 activation of the neural G protein Gαo. J Neurosci 31:11553–11562. doi:10.1523/JNEUROSCI.2072-11.2011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Fan P, Jiang Z, Diamond I, Yao L (2009) Up-regulation of AGS3 during morphine withdrawal promotes cAMP superactivation via adenylyl cyclase 5 and 7 in rat nucleus accumbens/striatal neurons. Mol Pharmacol 76:526–533. doi:10.1124/mol.109.057802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Sato M, Gettys TW, Lanier SM (2004) AGS3 and signal integration by Gαs- and Gαi-coupled receptors: AGS3 blocks the sensitization of adenylyl cyclase following prolonged stimulation of a Gαi-coupled receptor by influencing processing of Gαi. J Biol Chem 279:13375–13382. doi:10.1074/jbc.M312660200

    Article  CAS  PubMed  Google Scholar 

  17. Wang SC, Lai HL, Chiu YT, Ou R, Huang CL, Chern Y (2007) Regulation of type V adenylate cyclase by Ric8a, a guanine nucleotide exchange factor. Biochem J 406:383–388. doi:10.1042/BJ20070512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wang SC, Lin JT, Chern Y (2009) Novel regulation of adenylyl cyclases by direct protein-protein interactions: insights from snapin and ric8a. Neurosignals 17:169–180. doi:10.1159/000200076

    Article  PubMed  Google Scholar 

  19. Wong YH, Conklin BR, Bourne HR (1992) Gz-mediated hormonal inhibition of cyclic AMP accumulation. Science 255:339–342

    Article  CAS  PubMed  Google Scholar 

  20. Amoureux MC, Nicolas S, Rougon G (2012) NCAM180 regulates Ric8A membrane localization and potentiates β-adrenergic response. PLoS ONE 7:e32216. doi:10.1371/journal.pone.0032216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Sanada K, Tsai LH (2005) G protein βγ subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors. Cell 122:119–131. doi:10.1016/j.cell.2005.05.009

    Article  CAS  PubMed  Google Scholar 

  22. Woodard GE, Huang NN, Cho H, Miki T, Tall GG, Kehrl JH (2010) Ric-8A and Gαi recruit LGN, NuMA, and dynein to the cell cortex to help orient the mitotic spindle. Mol Cell Biol 30:3519–3530. doi:10.1128/MCB.00394-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Marty C, Browning DD, Ye RD (2003) Identification of tetratricopeptide repeat 1 as an adaptor protein that interacts with heterotrimeric G proteins and the small GTPase Ras. Mol Cell Biol 23:3847–3858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Liu AM, Lo RK, Lee MM, Wang Y, Yeung WW, Ho MK, Su Y, Ye RD, Wong YH (2010) Gα16 activates Ras by forming a complex with tetratricopeptide repeat 1 (TPR1) and Son of Sevenless (SOS). Cell Signal 22:1448–1458. doi:10.1016/j.cellsig.2010.05.013

    Article  CAS  PubMed  Google Scholar 

  25. Blumer JB, Kuriyama R, Gettys TW, Lanier SM (2006) The G-protein regulatory (GPR) motif-containing Leu–Gly–Asn-enriched protein (LGN) and Gαi3 influence cortical positioning of the mitotic spindle poles at metaphase in symmetrically dividing mammalian cells. Eur J Cell Biol 85:1233–1240. doi:10.1016/j.ejcb.2006.08.002

    Article  CAS  PubMed  Google Scholar 

  26. Morin X, Jaouen F, Durbec P (2007) Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium. Nat Neurosci 10:1440–1448. doi:10.1038/nn1984

    Article  CAS  PubMed  Google Scholar 

  27. Blumer JB, Chandler LJ, Lanier SM (2002) Expression analysis and subcellular distribution of the two G-protein regulators AGS3 and LGN indicate distinct functionality. Localization of LGN to the midbody during cytokinesis. J Biol Chem 277:15897–15903. doi:10.1074/jbc.M112185200

    Article  CAS  PubMed  Google Scholar 

  28. Fuja TJ, Schwartz PH, Darcy D, Bryant PJ (2004) Asymmetric localization of LGN but not AGS3, two homologs of Drosophila pins, in dividing human neural progenitor cells. J Neurosci Res 75:782–793. doi:10.1002/jnr.10874

    Article  CAS  PubMed  Google Scholar 

  29. Hara K, Fujita H, Johnson TA, Yamauchi T, Yasuda K, Horikoshi M, Peng C, Hu C, Ma RC, Imamura M, Iwata M, Tsunoda T, Morizono T, Shojima N, So WY, Leung TF, Kwan P, Zhang R, Wang J, Yu W, Maegawa H, Hirose H, Kaku K, Ito C, Watada H, Tanaka Y, Tobe K, Kashiwagi A, Kawamori R, Jia W, Chan JC, Teo YY, Shyong TE, Kamatani N, Kubo M, Maeda S, Kadowaki T, Consortium D (2014) Genome-wide association study identifies three novel loci for type 2 diabetes. Hum Mol Genet 23:239–246. doi:10.1093/hmg/ddt399

    Article  CAS  PubMed  Google Scholar 

  30. Kwon M, Pavlov TS, Nozu K, Rasmussen SA, Ilatovskaya DV, Lerch-Gaggl A, North LM, Kim H, Qian F, Sweeney WE, Avner ED, Blumer JB, Staruschenko A, Park F (2012) G-protein signaling modulator 1 deficiency accelerates cystic disease in an orthologous mouse model of autosomal dominant polycystic kidney disease. Proc Natl Acad Sci USA 109:21462–21467. doi:10.1073/pnas.1216830110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Regner KR, Nozu K, Lanier SM, Blumer JB, Avner ED, Sweeney WE, Park F (2011) Loss of activator of G-protein signaling 3 impairs renal tubular regeneration following acute kidney injury in rodents. FASEB J 25:1844–1855. doi:10.1096/fj.10-169797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Nadella R, Blumer JB, Jia G, Kwon M, Akbulut T, Qian F, Sedlic F, Wakatsuki T, Sweeney WE, Wilson PD, Lanier SM, Park F (2010) Activator of G protein signaling 3 promotes epithelial cell proliferation in PKD. J Am Soc Nephrol 21:1275–1280. doi:10.1681/ASN.2009121224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Du Q, Macara IG (2004) Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 119:503–516. doi:10.1016/j.cell.2004.10.028

    Article  CAS  PubMed  Google Scholar 

  34. Nipper RW, Siller KH, Smith NR, Doe CQ, Prehoda KE (2007) Gαi generates multiple Pins activation states to link cortical polarity and spindle orientation in Drosophila neuroblasts. Proc Natl Acad Sci U S A 104:14306–14311. doi:10.1073/pnas.0701812104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Pan Z, Zhu J, Shang Y, Wei Z, Jia M, Xia C, Wen W, Wang W, Zhang M (2013) An autoinhibited conformation of LGN reveals a distinct interaction mode between GoLoco motifs and TPR motifs. Structure 21:1007–1017. doi:10.1016/j.str.2013.04.005

    Article  CAS  PubMed  Google Scholar 

  36. Ruisu K, Kask K, Meier R, Saare M, Raid R, Veraksitš A, Karis A, Tõnissoo T, Pooga M (2013) Ablation of RIC8A function in mouse neurons leads to a severe neuromuscular phenotype and postnatal death. PLoS ONE 8:e74031. doi:10.1371/journal.pone.0074031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Blumer JB, Lord K, Saunders TL, Pacchioni A, Black C, Lazartigues E, Varner KJ, Gettys TW, Lanier SM (2008) Activator of G protein signaling 3 null mice: I. Unexpected alterations in metabolic and cardiovascular function. Endocrinology 149:3842–3849. doi:10.1210/en.2008-0050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Wong YH, Federman A, Pace AM, Zachary I, Evans T, Pouysségur J, Bourne HR (1991) Mutant α subunits of Gi2 inhibit cyclic AMP accumulation. Nature 351:63–65. doi:10.1038/351063a0

    Article  CAS  PubMed  Google Scholar 

  39. Romero-Pozuelo J, Dason JS, Mansilla A, Baños-Mateos S, Sardina JL, Chaves-Sanjuán A, Jurado-Gómez J, Santana E, Atwood HL, Hernández-Hernández A, Sánchez-Barrena MJ, Ferrús A (2014) The guanine-exchange factor Ric-8A binds the calcium sensor NCS-1 to regulate synapse number and probability of release. J Cell Sci. doi:10.1242/jcs.152603

    PubMed  Google Scholar 

  40. Tall GG, Gilman AG (2005) Resistance to inhibitors of cholinesterase 8A catalyzes release of Gαi-GTP and nuclear mitotic apparatus protein (NuMA) from NuMA/LGN/Gαi-GDP complexes. Proc Natl Acad Sci USA 102:16584–16589. doi:10.1073/pnas.0508306102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Vellano CP, Shu FJ, Ramineni S, Yates CK, Tall GG, Hepler JR (2011) Activation of the regulator of G protein signaling 14-Gαi1-GDP signaling complex is regulated by resistance to inhibitors of cholinesterase-8A. Biochemistry 50:752–762. doi:10.1021/bi101910n

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Nishimura A, Okamoto M, Sugawara Y, Mizuno N, Yamauchi J, Itoh H (2006) Ric-8A potentiates Gq-mediated signal transduction by acting downstream of G protein-coupled receptor in intact cells. Genes Cells 11:487–498. doi:10.1111/j.1365-2443.2006.00959.x

    Article  CAS  PubMed  Google Scholar 

  43. Yoshikawa K, Touhara K (2009) Myr-Ric-8A enhances Gα15-mediated Ca2+ response of vertebrate olfactory receptors. Chem Senses 34:15–23. doi:10.1093/chemse/bjn047

    Article  CAS  PubMed  Google Scholar 

  44. Willoughby D, Cooper DM (2007) Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev 87:965–1010. doi:10.1152/physrev.00049.2006

    Article  CAS  PubMed  Google Scholar 

  45. Ludwig MG, Seuwen K (2002) Characterization of the human adenylyl cyclase gene family: cDNA, gene structure, and tissue distribution of the nine isoforms. J Recept Signal Transduct Res 22:79–110. doi:10.1081/RRS-120014589

    Article  CAS  PubMed  Google Scholar 

  46. An N, Blumer JB, Bernard ML, Lanier SM (2008) The PDZ and band 4.1 containing protein Frmpd1 regulates the subcellular location of activator of G-protein signaling 3 and its interaction with G-proteins. J Biol Chem 283:24718–24728. doi:10.1074/jbc.M803497200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Blumer JB, Bernard ML, Peterson YK, Nezu J, Chung P, Dunican DJ, Knoblich JA, Lanier SM (2003) Interaction of activator of G-protein signaling 3 (AGS3) with LKB1, a serine/threonine kinase involved in cell polarity and cell cycle progression: phosphorylation of the G-protein regulatory (GPR) motif as a regulatory mechanism for the interaction of GPR motifs with Gi alpha. J Biol Chem 278:23217–23220. doi:10.1074/jbc.C200686200

    Article  CAS  PubMed  Google Scholar 

  48. Chadwick W, Brenneman R, Martin B, Maudsley S (2010) Complex and multidimensional lipid raft alterations in a murine model of Alzheimer’s disease. Int J Alzheimers Dis 2010:604792. doi:10.4061/2010/604792

    PubMed Central  PubMed  Google Scholar 

  49. Kam AY, Liu AM, Wong YH (2007) Formyl peptide-receptor like-1 requires lipid raft and extracellular signal-regulated protein kinase to activate inhibitor-kappa B kinase in human U87 astrocytoma cells. J Neurochem 103:1553–1566. doi:10.1111/j.1471-4159.2007.04876.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Yijuang Chern and Marie-Claude Amoureux for the provision of cDNAs. This study was supported by the National Key Basic Research Program of China (2013CB530900), Hong Kong RGC (661807), UGC (T13-607/12R), and the Hong Kong Jockey Club.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung H. Wong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tse, M.K., Morris, C.J., Zhang, M. et al. Activator of G protein signaling 3 forms a complex with resistance to inhibitors of cholinesterase-8A without promoting nucleotide exchange on Gαi3 . Mol Cell Biochem 401, 27–38 (2015). https://doi.org/10.1007/s11010-014-2289-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2289-7

Keywords

Navigation