Skip to main content
Log in

Fluvastatin attenuated the effect of expression of β1 integrin in PAN-treated podocytes by inhibiting reactive oxygen species

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

It is well accepted that β1 integrin plays a key role in maintaining normal podocytes form and functions; however, its mechanism of the potential protective effect remains unclear. Furthermore, the investigation and understanding of the non-lipid-dependent renal protection of Statins in addition to well-known lipid-lowering effect may provide the therapeutic utility and ultimately improve clinical outcome for patients with renal diseases. In the present study, we investigated the effect and mechanism of fluvastatin (FLV) on the expression of β1 integrin in puromycin aminonucleoside (PAN)-treated podocytes in vitro. Cultured human podocytes were treated with PAN, and/or different concentrations of FLV (1 × 10−8–1 × 10−5 mol/l), superoxide dismutase (SOD), or H2O2, respectively. The expression of β1 integrin and reactive oxygen species (ROS) in human podocytes under each experimental condition was evaluated by western blot, RT-PCR, and 2′7′-dichlorofluorescein 3′6′-diacetate, respectively. The viability of podocytes was also assessed by MTT colorimetry in the present study. The expression of β1 integrin was significantly decreased, and the synthesis of ROS was significantly increased in podocytes following either PAN or H2O2 treatment (p < 0.05). The up-regulation of β1 integrin and down-regulation of ROS were also observed in PAN-treated podocytes following lower concentrations of FLV or SOD treatment (p < 0.05, respectively). The cytotoxicity data derived from MTT assay revealed that lower podocyte viability was found in the presence of higher concentrations of FLV, PAN, or H2O2. Lower concentration of FLV or SOD can protect podocytes from being impaired by PAN treatment. FLV attenuated the podocyte injury induced by PAN and increased the production of β1 integrin in human podocytes in vitro. This underlying mechanism of FLV may be through inhibiting the activity of ROS in human podocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pavenstädt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83(1):253–307

    PubMed  Google Scholar 

  2. Kojima K, Davidovits A, Poczewski H (2004) Podocyte flattening and disorder of glomerular basement membrane are associated with splitting of dystroglycan-matrix interaction. J Am Soc Nephrol 15(8):2079–2089

    Article  CAS  PubMed  Google Scholar 

  3. Korhonen M, Ylänne J, Laitinen L, Virtanen I (1990) Distribution of β1 and α3 integrins in human fetal and adult kidney. Lab Invest 62(5):616–625

    CAS  PubMed  Google Scholar 

  4. Adler S (1992) Characterization of glomerular epithelial cell matrix receptors. Am J Pathol 141(3):571–578

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Kretzler M (2002) Regulation of adhesive interaction between podocytes and glomerular basement membrane. Microsc Res Tech 57(4):247–253

    Article  CAS  PubMed  Google Scholar 

  6. Chen J, Gui D, Chen Y, Mou L, Liu Y, Huang J (2008) Astragaloside IV improves high glucose-induced podocyte adhesion dysfunction via α3β1 integrin up regulation and integrin-linked kinase inhibition. Biochem Pharmacol 76(6):796–804

    Article  CAS  PubMed  Google Scholar 

  7. Dessapt C, Baradez MO, Hayward A, Deicas A, Thomas SM, Viberti G, Gnudi L (2009) Mechanical forces and TGFbeta1 reduce podocyte adhesion through alpha3beta1 integrin downregulation. Nephrol Dial Transplant 24(9):2645–2655

    Article  CAS  PubMed  Google Scholar 

  8. Shibata S, Nagase M, Fujita T (2006) Fluvastatin ameliorates podocyte injury in proteinuric rats via modulation of excessive Rho signaling. J Am Soc Nephrol 17(3):754–764

    Article  CAS  PubMed  Google Scholar 

  9. Saleem MA, O’Hare MJ, Reiser J, Coward RJ, Inward CD, Farren T, Xing CY, Ni L, Mathieson PW, Mundel P (2002) A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J Am Soc Nephrol 13(3):630–638

    CAS  PubMed  Google Scholar 

  10. Wang R, Li J, Lyte K, Yashpal NK, Fellows F, Goodyer CG (2005) Role for beta1 integrin and its associated alpha3, alpha5, and alpha6 subunits in development of the human fetal pancreas. Diabetes 54(7):2080–2089

    Article  CAS  PubMed  Google Scholar 

  11. Wang Hong, Jeoseph James A (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Biol Med 27(5–6):612–616

    Article  CAS  Google Scholar 

  12. Kriz W (2002) Podocyte is the major culprit accounting for the progression of chronic renal disease. Microsc Res Tech 57(4):189–195

    Article  PubMed  Google Scholar 

  13. Pavenstädt H (2000) Roles of the podocyte in glomerular function. Am J Physiol 278(2):F173–F179

    Google Scholar 

  14. Kerjaschki D, Neale TJ (1996) Molecular mechanisms of glomerular injury in rat experimental membranous nephropathy (Heymann nephritis). J Am Soc Nephrol 7(12):2518–2526

    CAS  PubMed  Google Scholar 

  15. Cybulsky AV, Carbonetto S, Huang Q, Mctavish AJ, Cyr MD (1992) Adhesion of rat glomerular epithelial cells to extracellular matrices: role of beta 1 integrins. Kidney Int 42(5):1099–1106

    Article  CAS  PubMed  Google Scholar 

  16. Chen CA, Hwang JC, Guh JY, Chang JM, Lai YH, Chen HC (2006) Reduced podocyte expression of alpha3beta1 integrins and podocyte depletion in patients with primary focal segmental glomerulosclerosis and chronic PAN-treated rats. J Lab Clin Med 147:74–82

    Article  CAS  PubMed  Google Scholar 

  17. Kreidberg JA, Donovan MJ, Goldstein SL, Rennke H, Shepherd K, Jones RC, Jaenisch R (1996) Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development 122(11):3537–3547

    CAS  PubMed  Google Scholar 

  18. Pozzi A et al (2008) β1 integrin expression by podocytes is required to maintain glomerular structural integrity. Developmental Biology 316:288–301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Cai H (2005) Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc Res 68:26–36

    Article  CAS  PubMed  Google Scholar 

  20. Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440:944–948

    Article  CAS  PubMed  Google Scholar 

  21. Ricardo SD, Bertram JF, Ryan GB (1994) Antioxidants protect podocyte foot processes in puromycin aminonucleoside-treated rats. J Am Soc Nephrol 4(12):1974–1986

    CAS  PubMed  Google Scholar 

  22. Neale TJ, Ullrich R, Ojha P, Poczewski H, Verhoeven AJ, Kerjaschki D (1993) Reactive oxygen species and neutrophil respiratory burst cytochrome b558 are produced by kidney glomerular cells in passive Heymann nephritis. Proc Natl Acad Sci USA 90:3645–3649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Shah SV (1988) Evidence suggesting a role for hydroxyl radical in passive Heymann nephritis in rats. Am J Physiol 254(3 Pt 2):F337–F344

    CAS  PubMed  Google Scholar 

  24. Binder CJ, Weiher H, Exner M, Kerjaschki D (1999) Glomerular overproduction of oxygen radicals in Mpv17 gene-inactivated mice causes podocyte foot process flattening and proteinuria: a model of steroid-resistant nephrosis sensitive to radical scavenger therapy. Am J Pathol 154:1067–1075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kojima K, Matsui K, Nagase M (2000) Protection of alpha3 integrin-mediated podocyte shape by superoxide dismutase in the puromycin aminonucleoside nephrosis rat. Am J Kidney Dis 35(6):1175–1185

    Article  CAS  PubMed  Google Scholar 

  26. Ongini E, Impagnatiello F, Bonazzi A, Guzzetta M, Govoni M, Monopoli A, Del Soldato P, Ignarro LJ (2004) Nitric oxide (NO)-releasing statin derivatives, a class of drugs showing enhanced antiproliferative and antiinflammatory properties. Proc Natl Acad Sci USA 101(22):8497–8502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Mason RP (2006) Molecular basis of differences among statins and a comparison with antioxidant vitamins. Am J Cardiol 98(11A):34–41

    Article  Google Scholar 

  28. Li X, Liu L, Tupper JC, Bannerman DD, Winn RK, Sebti SM, Hamilton AD, Harlan JM (2002) Inhibition of protein geranylgeranylation and RhoA/RhoA kinase pathway induces apoptosis in human endothelial cells. J Biol Chem 277(18):15309–15316

    Article  CAS  PubMed  Google Scholar 

  29. Alexander Christian et al (2006) Statins inhibit hypoxia-induced endothelial proliferation by preventing calcium-induced ROS formation. Atherosclerosis 185(2):290–296

    Article  Google Scholar 

  30. Mason RP, Walter MF, Jacob RF (2004) Effects of HMG-CoA reductase inhibition of endothelial function: role of microdomains and oxidative stress. Circulation 109(21 Suppl 1):II34–II41

    PubMed  Google Scholar 

  31. Xiaoniao CHEN et al (2010) Simvastatin combined with nifedipine enhances endothelial cell protection by inhibiting ROS generation and activating Akt phosphorylation. Acta Pharmacol Sin 31(7):813–820

    Article  Google Scholar 

  32. Thomas SR, Witting PK, Drummond GR (2008) Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 10(10):1713–1765

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Wang H (2012) Integrin signalling and function in immune cells. Immunology 135(4):268–275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Tong L, Tergaonkar V (2014) Rho protein GTPases and their interactions with NFκB: crossroads of inflammation and matrix biology. Biosci Rep 34(3):283–295

    Article  CAS  Google Scholar 

  35. Wang W, Wang Y, Long J, Wang J, Haudek SB, Overbeek P, Chang BH, Schumacker PT, Danesh FR (2012) Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab 15(2):186–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Smoyer WE, Ransom RF (2002) Hsp27 regulates podocyte cytoskeletal changes in an in vitro model of podocyte process retraction. FASEB J 16(3):315–326

    Article  CAS  PubMed  Google Scholar 

  37. Whiteside CI, Cameron R, Munk S, Levy J (1993) Podocytic cytoskeletal disaggregation and basement-membrane detachment in puromycin aminonucleoside nephrosis. Am J Pathol 142(5):1641–1653

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Mundel P, Shankland SJ (2002) Podocyte biology and response to injury. J Am Soc Nephrol 13(12):3005–3015

    Article  PubMed  Google Scholar 

  39. Van Aelst L, D’Souza-Schorey C (1997) Rho GTPases and signaling networks. Genes Dev 11(18):2295–2322

    Article  PubMed  Google Scholar 

  40. Endlich N, Kress KR, Reiser J, Uttenweiler D, Kriz W, Mundel P, Endlich K (2001) Podocytes respond to mechanical stress in vitro. J Am Soc Nephrol 12(3):413–422

    CAS  PubMed  Google Scholar 

  41. Tatara Y, Ohishi M, Yamamoto K, Shiota A, Hayashi N, Iwamoto Y, Takeda M, Takagi T, Katsuya T, Ogihara T, Rakugi H (2009) Macrophage inflammatory protein-1β induced cell adhesion with increased intracellular reactive oxygen species. J Mol Cell Cardiol 47(1):104–111

    Article  CAS  PubMed  Google Scholar 

  42. Kawaguchi M, Yamada M, Wada H, Okigaki T (1996) Roles of active oxygen species in glomerular epithelial cell injury in vitro caused by puromycin aminonucleoside. Toxicology 72(3):329–340

    Article  Google Scholar 

  43. Xu SZ, Zhong W et al (2008) Fluvastatin reduces oxidative damage in human vascular endothelial cells by up regulating Bcl-2. J Thromb Haemost 6(4):692–700

    Article  CAS  PubMed  Google Scholar 

  44. Maeda A, Yano T, Itoh Y, Kakumori M, Kubota T, Egashira N, Oishi R (2010) Down-regulation of RhoA is involved in the cytotoxic action of lipophilic statins in HepG2 cells. Atherosclerosis 208(1):112–118

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by PAPD and Grants from the National Natural Science Foundation of China (81100512/H0510, 81170660/H0509, 81370815/H0509)

Conflict of interest

There is no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhang.

Additional information

Jia Liu and Bo Zhang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhang, B., Chai, Y. et al. Fluvastatin attenuated the effect of expression of β1 integrin in PAN-treated podocytes by inhibiting reactive oxygen species. Mol Cell Biochem 398, 207–215 (2015). https://doi.org/10.1007/s11010-014-2220-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2220-2

Keywords

Navigation