Skip to main content

Advertisement

Log in

Decreased BMP2 signal in GIT1 knockout mice slows bone healing

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Endochondral ossification, an important stage of fracture healing, is regulated by a variety of signaling pathways. Transforming growth factor β (TGFβ) superfamily plays important roles and comprises TGFβs, bone morphogenetic proteins (BMPs), and growth differentiation factors. TGFβs primarily regulate cartilage formation and endochondral ossification. BMP2 shows diverse efficacy, from the formation of skeleton and extraskeletal organs to the osteogenesis and remodeling of bone. G-protein-coupled receptor kinase 2-interacting protein-1 (GIT1), a shuttle protein in osteoblasts, facilitates fracture healing by promoting bone formation and increasing the secretion of vascular endothelial growth factor. Our study examined whether GIT1 regulates fracture healing through the BMP2 signaling pathway and/or through the TGFβ signaling pathway. GIT1 knockout (KO) mice exhibited delayed fracture healing, chondrocyte accumulation in the fracture area, and reduced staining intensity of phosphorylated Smad1/5/8 (pSmad1/5/8) and Runx2. Endochondral mineralization diminished while the staining intensity of phosphorylated Smad2/3 (pSmad2/3) showed no significant change. Bone marrow mesenchymal stem cells extracted from GIT1 KO mice showed a decline of pSmad1/5/8 levels and of pSmad1/5/8 translocated into the cell nucleus after BMP2 stimulus. We detected no significant change in the pSmad2/3 level after TGFβ1 stimulus. Data obtained from reporter gene analysis of C3H10T1/2 cells cultured in vitro confirmed these findings. GIT1-siRNA inhibited transcription in the cell nucleus via pSmad1/5/8 after BMP2 stimulus but had no significant effect on transcription via pSmad2/3 after TGFβ1 stimulus. Our results indicate that GIT1 regulates Smad1/5/8 phosphorylation and mediates BMP2 regulation of Runx2 expression, thus affecting endochondral ossification at the fracture site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88:873–884. doi:10.1002/jcb.10435

    Article  PubMed  CAS  Google Scholar 

  2. Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop Relat Res:S7-21

  3. Tsiridis E, Upadhyay N, Giannoudis P (2007) Molecular aspects of fracture healing: which are the important molecules? Injury 38(Suppl 1):S11–S25. doi:10.1016/j.injury.2007.02.006

    Article  PubMed  Google Scholar 

  4. Adams CS, Shapiro IM (2002) The fate of the terminally differentiated chondrocyte: evidence for microenvironmental regulation of chondrocyte apoptosis. Crit Rev Oral Biol Med 13:465–473

    Article  PubMed  Google Scholar 

  5. Tomlinson RE, McKenzie JA, Schmieder AH, Wohl GR, Lanza GM, Silva MJ (2013) Angiogenesis is required for stress fracture healing in rats. Bone 52:212–219. doi:10.1016/j.bone.2012.09.035

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Cleary MA, van Osch GJ, Brama PA, Hellingman CA and Narcisi R (2013) FGF, TGFbeta and Wnt crosstalk: embryonic to in vitro cartilage development from mesenchymal stem cells. J Tissue Eng Regen Med. doi: 10.1002/term.1744

  7. Smith AL, Robin TP, Ford HL (2012) Molecular pathways: targeting the TGF-beta pathway for cancer therapy. Clin Cancer Res 18:4514–4521. doi:10.1158/1078-0432.CCR-11-3224

    Article  PubMed  CAS  Google Scholar 

  8. Freyria AM, Courtes S, Mallein-Gerin F (2008) Differentiation of adult human mesenchymal stem cells: chondrogenic effect of BMP-2. Pathol Biol (Paris) 56:326–333. doi:10.1016/j.patbio.2007.09.010

    Article  CAS  Google Scholar 

  9. Lo YC, Chang YH, Wei BL, Huang YL, Chiou WF (2010) Betulinic acid stimulates the differentiation and mineralization of osteoblastic MC3T3-E1 cells: involvement of BMP/Runx2 and beta-catenin signals. J Agric Food Chem 58:6643–6649. doi:10.1021/jf904158k

    Article  PubMed  CAS  Google Scholar 

  10. Hoefen RJ, Berk BC (2006) The multifunctional GIT family of proteins. J Cell Sci 119:1469–1475. doi:10.1242/jcs.02925

    Article  PubMed  CAS  Google Scholar 

  11. Pang J, Yan C, Natarajan K, Cavet ME, Massett MP, Yin G, Berk BC (2008) GIT1 mediates HDAC5 activation by angiotensin II in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 28:892–898. doi:10.1161/ATVBAHA.107.161349

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Yin G, Haendeler J, Yan C, Berk BC (2004) GIT1 functions as a scaffold for MEK1-extracellular signal-regulated kinase 1 and 2 activation by angiotensin II and epidermal growth factor. Mol Cell Biol 24:875–885

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Rui Z, Li X, Fan J, Ren Y, Yuan Y, Hua Z, Zhang N, Yin G (2012) GIT1Y321 phosphorylation is required for ERK1/2- and PDGF-dependent VEGF secretion from osteoblasts to promote angiogenesis and bone healing. Int J Mol Med 30:819–825. doi:10.3892/ijmm.2012.1058

    PubMed  CAS  Google Scholar 

  14. Ren Y, Yu L, Fan J, Rui Z, Hua Z, Zhang Z, Zhang N, Yin G (2012) Phosphorylation of GIT1 tyrosine 321 is required for association with FAK at focal adhesions and for PDGF-activated migration of osteoblasts. Mol Cell Biochem 365:109–118. doi:10.1007/s11010-012-1249-3

    Article  PubMed  CAS  Google Scholar 

  15. Menon P, Yin G, Smolock EM, Zuscik MJ, Yan C, Berk BC (2010) GPCR kinase 2 interacting protein 1 (GIT1) regulates osteoclast function and bone mass. J Cell Physiol 225:777–785. doi:10.1002/jcp.22282

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Wang J, Yin G, Menon P, Pang J, Smolock EM, Yan C, Berk BC (2010) Phosphorylation of G protein-coupled receptor kinase 2-interacting protein 1 tyrosine 392 is required for phospholipase C-gamma activation and podosome formation in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 30:1976–1982. doi:10.1161/ATVBAHA.110.212415

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Marturano JE, Cleveland BC, Byrne MA, O’Connell SL, Wixted JJ, Billiar KL (2008) An improved murine femur fracture device for bone healing studies. J Biomech 41:1222–1228. doi:10.1016/j.jbiomech.2008.01.029

    Article  PubMed  Google Scholar 

  18. Morikawa M, Koinuma D, Tsutsumi S, Vasilaki E, Kanki Y, Heldin CH, Aburatani H, Miyazono K (2011) ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif. Nucleic Acids Res 39:8712–8727. doi:10.1093/nar/gkr572

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Tchetina EV, Antoniou J, Tanzer M, Zukor DJ, Poole AR (2006) Transforming growth factor-beta2 suppresses collagen cleavage in cultured human osteoarthritic cartilage, reduces expression of genes associated with chondrocyte hypertrophy and degradation, and increases prostaglandin E(2) production. Am J Pathol 168:131–140

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Alvarez J, Horton J, Sohn P, Serra R (2001) The perichondrium plays an important role in mediating the effects of TGF-beta1 on endochondral bone formation. Dev Dyn 221:311–321. doi:10.1002/dvdy.1141

    Article  PubMed  CAS  Google Scholar 

  21. Yang X, Chen L, Xu X, Li C, Huang C, Deng CX (2001) TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol 153:35–46

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Hassan MQ, Tare RS, Lee SH, Mandeville M, Morasso MI, Javed A, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2006) BMP2 commitment to the osteogenic lineage involves activation of Runx2 by DLX3 and a homeodomain transcriptional network. J Biol Chem 281:40515–40526. doi:10.1074/jbc.M604508200

    Article  PubMed  CAS  Google Scholar 

  23. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754

    Article  PubMed  CAS  Google Scholar 

  24. Sueyoshi T, Yamamoto K, Akiyama H (2012) Conditional deletion of Tgfbr2 in hypertrophic chondrocytes delays terminal chondrocyte differentiation. Matrix Biol 31:352–359. doi:10.1016/j.matbio.2012.07.002

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China (NSFC, 81071481 81271988) and Jiangsu Province Nature Science Foundation (JPNSF,BK2012876).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoyong Yin or Bradford C. Berk.

Additional information

T.J. Sheu and Wei Zhou equal contribution to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheu, T.J., Zhou, W., Fan, J. et al. Decreased BMP2 signal in GIT1 knockout mice slows bone healing. Mol Cell Biochem 397, 67–74 (2014). https://doi.org/10.1007/s11010-014-2173-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2173-5

Keywords

Navigation