Skip to main content
Log in

Cooperation of luteinizing hormone signaling pathways in preovulatory avian follicles regulates circadian clock expression in granulosa cell

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Ovulation in birds is triggered by a surge of luteinizing hormone (LH), and the ovulatory cycle is affected by the circadian rhythms of clock genes transcription levels in follicles. The influence of LH signaling cascades action on circadian clock genes was investigated using granulosa cells of preovulatory follicles from Roman hens cultured in a serum-free system. The expression of core oscillators (Bmal1, Clock, Cry1, Per2, and Rev-erbβ), clock-controlled gene (Star), Egr-1 and LHr was measured by quantitative real-time PCR. Significant changes in clock genes transcription levels were observed in control groups over 24 h, indicating that cell-autonomous rhythms exist in granulosa cells. Intriguingly, the transcript levels of clock genes increased with LH treatment during 24 h of culture; they peaked 4 h in advance of controls and second but weaker oscillations were also observed. It appeared that LH changed the cell-autonomous rhythm and cycle time of clock genes. To further investigate the LH signaling cascades, inhibitors of cyclic adenosine monophosphate (cAMP), p38 mitogen-activated protein kinases (p38MAPK) and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathways were used. The transcript levels of clock genes were suppressed by blocking cAMP, but increased with similar expression patterns by blocking the p38MPAK and ERK1/2 pathways over 24 h. Thus, the influence of LH signaling cascades in chicken ovulation is mediated by the cAMP pathway and also involves the p38MAPK and ERK1/2 pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LH:

Luteinizing hormone

CT:

Cycle time

DXM:

Dexamethasone

qPCR:

Quantitative real-time PCR

cAMP:

Cyclic adenosine monophosphate

p38MAPK:

p38 mitogen-activated protein kinases

ERK1/2:

Extracellular signal-regulated kinases 1 and 2

SCN:

Suprachiasmatic nucleus

cDNA:

Complementary DNA

ZT:

Zeitgeber time

AREG:

EGF-like growth factor

VLDLR:

Very low-density-lipoprotein receptor

EGFR:

EGF receptor

References

  1. Tischkau SA, Howell RE, Hickok JR, Krager SL, Bahr JM (2011) The luteinizing hormone surge regulates circadian clock gene expression in the chicken ovary. c 28:10–20. doi:10.3109/07420528.2010.530363

    CAS  Google Scholar 

  2. Kriegsfeld LJ, Silver R (2006) The regulation of neuroendocrine function: timing is everything. Horm Behav 49:557–574. doi:10.1016/j.yhbeh.2005.12.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Tsutsui K, Bentley GE, Bedecarrats G, Osugi T, Ubuka T, Kriegsfeld LJ (2010) Gonadotropin-inhibitory hormone (GnIH) and its control of central and peripheral reproductive function. Front Neuroendocrinol 31:284–295. doi:10.1016/j.yfrne.2010.03.001

    Article  CAS  PubMed  Google Scholar 

  4. Sharp PJ, MacNamee MC, Talbot RT, Sterling RJ, Hall TR (1984) Aspects of the neuroendocrine control of ovulation and broodiness in the domestic hen. J Exp Zool 232:475–483. doi:10.1002/jez.1402320314

    Article  CAS  PubMed  Google Scholar 

  5. Nakao N, Yasuo S, Nishimura A, Yamamura T, Watanabe T, Anraku T, Okano T, Fukada Y, Sharp PJ, Ebihara S, Yoshimura T (2007) Circadian clock gene regulation of steroidogenic acute regulatory protein gene expression in preovulatory ovarian follicles. Endocrinology 148:3031–3038. doi:10.1210/en.2007-0044

    Article  CAS  PubMed  Google Scholar 

  6. Underwood H, Siopes T, Edmonds K (1997) Eye and gonad: role in the dual-oscillator circadian system of female Japanese quail. Am J Physiol 272:R172–R182

    CAS  PubMed  Google Scholar 

  7. Calvo FO, Wang SC, Bahr JM (1981) LH-stimulable adenylyl cyclase activity during the ovulatory cycle in granulosa cells of the three largest follicles and the postovulatory follicle of the domestic hen (Gallus domesticus). Biol Reprod 25:805–812

    Article  CAS  PubMed  Google Scholar 

  8. Park J-Y, Su Y-Q, Ariga M, Law E, Jin S-LC, Conti M (2004) EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 303:682–684

    Article  CAS  PubMed  Google Scholar 

  9. Ashkenazi H, Cao X, Motola S, Popliker M, Conti M, Tsafriri A (2005) Epidermal growth factor family members: endogenous mediators of the ovulatory response. Endocrinology 146:77–84. doi:10.1210/en.2004-0588

    Article  CAS  PubMed  Google Scholar 

  10. Sekiguchi T, Mizutani T, Yamada K, Kajitani T, Yazawa T, Yoshino M, Miyamoto K (2004) Expression of epiregulin and amphiregulin in the rat ovary. J Mol Endocrinol 33:281–291

    Article  CAS  PubMed  Google Scholar 

  11. Holbro T, Hynes NE (2004) ErbB receptors: directing key signaling networks throughout life. Annu Rev Pharmacol Toxicol 44:195–217. doi:10.1146/annurev.pharmtox.44.101802.121440

    Article  CAS  PubMed  Google Scholar 

  12. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941. doi:10.1038/nature00965

    Article  CAS  PubMed  Google Scholar 

  13. Mirsky HP, Liu AC, Welsh DK, Kay SA, Doyle FJ 3rd (2009) A model of the cell-autonomous mammalian circadian clock. Proc Natl Acad Sci USA 106:11107–11112. doi:10.1073/pnas.0904837106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564–1569

    Article  CAS  PubMed  Google Scholar 

  15. Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, Iino M, Hashimoto S (2005) System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37:187–192. doi:10.1038/ng1504

    Article  CAS  PubMed  Google Scholar 

  16. Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6:544–556. doi:10.1038/nrg1633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Akashi M, Tsuchiya Y, Yoshino T, Nishida E (2002) Control of intracellular dynamics of mammalian period proteins by casein kinase I ε (CKIε) and CKIδ in cultured cells. Mol Cell Biol 22:1693–1703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM (2001) Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107:855–867

    Article  CAS  PubMed  Google Scholar 

  19. Sato TK, Yamada RG, Ukai H, Baggs JE, Miraglia LJ, Kobayashi TJ, Welsh DK, Kay SA, Ueda HR, Hogenesch JB (2006) Feedback repression is required for mammalian circadian clock function. Nat Genet 38:312–319. doi:10.1038/ng1745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Preitner N, Damiola F, Zakany J, Duboule D, Albrecht U, Schibler U (2002) The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260

    Article  CAS  PubMed  Google Scholar 

  21. Akashi M, Takumi T (2005) The orphan nuclear receptor RORα regulates circadian transcription of the mammalian core-clock Bmal1. Nat Struct Mol Biol 12:441–448

    Article  CAS  PubMed  Google Scholar 

  22. Guillaumond F, Dardente H, Giguere V, Cermakian N (2005) Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms 20:391–403. doi:10.1177/0748730405277232

    Article  CAS  PubMed  Google Scholar 

  23. Liu AC, Tran HG, Zhang EE, Priest AA, Welsh DK, Kay SA (2008) Redundant function of REV-ERBα and β and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. PLoS Genet 4:e1000023

    Article  PubMed Central  PubMed  Google Scholar 

  24. Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, Naik KA, FitzGerald GA, Kay SA, Hogenesch JB (2004) A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43:527–537. doi:10.1016/j.neuron.2004.07.018

    Article  CAS  PubMed  Google Scholar 

  25. Grant B, Hirsh D (1999) Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol Biol Cell 10:4311–4326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Schneider WJ, Osanger A, Waclawek M, Nimpf J (1998) Oocyte growth in the chicken: receptors and more. Biol Chem 379:965–971

    CAS  PubMed  Google Scholar 

  27. Etches RJ, Schoch JP (1984) A mathematical representation of the ovulatory cycle of the domestic hen. Br Poult Sci 25:65–76. doi:10.1080/13632758408454843

    Article  CAS  PubMed  Google Scholar 

  28. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950–2961

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. McNamara P, Seo SB, Rudic RD, Sehgal A, Chakravarti D, FitzGerald GA (2001) Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell 105:877–889

    Article  CAS  PubMed  Google Scholar 

  30. Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G, Schibler U (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289:2344–2347

    Article  CAS  PubMed  Google Scholar 

  31. Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705. doi:10.1016/j.cell.2004.11.015

    Article  CAS  PubMed  Google Scholar 

  32. Russell DL, Doyle KM, Gonzales-Robayna I, Pipaon C, Richards JS (2003) Egr-1 induction in rat granulosa cells by follicle-stimulating hormone and luteinizing hormone: combinatorial regulation by transcription factors cyclic adenosine 3′,5′-monophosphate regulatory element binding protein, serum response factor, sp1, and early growth response factor-1. Mol Endocrinol 17:520–533. doi:10.1210/me.2002-0066

    Article  CAS  PubMed  Google Scholar 

  33. Espey LL, Ujioka T, Russell DL, Skelsey M, Vladu B, Robker RL, Okamura H, Richards JS (2000) Induction of early growth response protein-1 gene expression in the rat ovary in response to an ovulatory dose of human chorionic gonadotropin. Endocrinology 141:2385–2391. doi:10.1210/endo.141.7.7582

    CAS  PubMed  Google Scholar 

  34. Wang C, Li SJ, Yu WH, Xin QW, Li C, Feng YP, Peng XL, Gong YZ (2011) Cloning and expression profiling of the VLDLR gene associated with egg performance in duck (Anas platyrhynchos). Genet Sel Evol 43:29. doi:10.1186/1297-9686-43-29

    Article  PubMed Central  PubMed  Google Scholar 

  35. He PJ, Hirata M, Yamauchi N, Hashimoto S, Hattori MA (2007) Gonadotropic regulation of circadian clockwork in rat granulosa cells. Mol Cell Biochem 302:111–118. doi:10.1007/s11010-007-9432-7

    Article  CAS  PubMed  Google Scholar 

  36. Murray SC, Keeble SC, Muse KN, Curry TE Jr (1996) Regulation of granulosa cell-derived ovarian metalloproteinase inhibitor(s) by prolactin. Genet Sel Evol 107:103–108

    CAS  Google Scholar 

  37. Karman BN, Tischkau SA (2006) Circadian clock gene expression in the ovary: effects of luteinizing hormone. Biol Reprod 75:624–632. doi:10.1095/biolreprod.106.050732

    Article  CAS  PubMed  Google Scholar 

  38. Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328

    Article  CAS  PubMed  Google Scholar 

  39. Boden MJ, Varcoe TJ, Voultsios A, Kennaway DJ (2010) Reproductive biology of female Bmal1 null mice. Reproduction 139:1077–1090. doi:10.1530/REP-09-0523

    Article  CAS  PubMed  Google Scholar 

  40. Bahr JM, Johnson AL (1984) Regulation of the follicular hierarchy and ovulation. J Exp Zool 232:495–500. doi:10.1002/jez.1402320316

    Article  CAS  PubMed  Google Scholar 

  41. Johnson A, Solovieva E, Bridgham J (2002) Relationship between steroidogenic acute regulatory protein expression and progesterone production in hen granulosa cells during follicle development. Biol Reprod 67:1313–1320

    Article  CAS  PubMed  Google Scholar 

  42. Tischkau SA, Jackson JA, Finnigan-Bunick C, Bahr JM (1996) Granulosa layer: primary site of regulation of plasminogen activator messenger ribonucleic acid by luteinizing hormone in the avian ovary. Biol Reprod 55:75–79

    Article  CAS  PubMed  Google Scholar 

  43. Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP (2006) Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev 20:1868–1873. doi:10.1101/gad.1432206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Woods DC, Johnson AL (2006) Phosphatase activation by epidermal growth factor family ligands regulates extracellular regulated kinase signaling in undifferentiated hen granulosa cells. Endocrinology 147:4931–4940. doi:10.1210/en.2006-0194

    Article  CAS  PubMed  Google Scholar 

  45. Fan HY, Liu Z, Shimada M, Sterneck E, Johnson PF, Hedrick SM, Richards JS (2009) MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science 324:938–941. doi:10.1126/science.1171396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Chun KS, Surh YJ (2004) Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention. Biochem Pharmacol 68:1089–1100. doi:10.1016/j.bcp.2004.05.031

    Article  CAS  PubMed  Google Scholar 

  47. Yao HH, Bahr JM (2001) Chicken granulosa cells show differential expression of epidermal growth factor (EGF) and luteinizing hormone (LH) receptor messenger RNA and differential responsiveness to EGF and LH dependent upon location of granulosa cells to the germinal disc. Biol Reprod 64:1790–1796

    Article  CAS  PubMed  Google Scholar 

  48. Alvarez J, Hansen A, Ord T, Bebas P, Chappell PE, Giebultowicz JM, Williams C, Moss S, Sehgal A (2008) The circadian clock protein BMAL1 is necessary for fertility and proper testosterone production in mice. J Biol Rhythms 23:26–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Hsieh M, Thao K, Conti M (2011) Genetic dissection of epidermal growth factor receptor signaling during luteinizing hormone-induced oocyte maturation. PLoS ONE 6:e21574. doi:10.1371/journal.pone.0021574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the breeding research project of Sichuan Province (No. 2011NZ0099-7), the support program of Sichuan Province (No. 2011NZ0073) and the major projects of the department of agriculture (No. CARS-41).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Zhu.

Additional information

Liang Li and Zhichao Zhang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhang, Z., Peng, J. et al. Cooperation of luteinizing hormone signaling pathways in preovulatory avian follicles regulates circadian clock expression in granulosa cell. Mol Cell Biochem 394, 31–41 (2014). https://doi.org/10.1007/s11010-014-2078-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2078-3

Keywords

Navigation