Skip to main content
Log in

Fibronectin–integrin mediated signaling in human cervical cancer cells (SiHa)

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Interaction between cell surface integrin receptors and extracellular matrix (ECM) components plays an important role in cell survival, proliferation, and migration, including tumor development and invasion of tumor cells. Matrix metalloproteinases (MMPs) are a family of metalloproteinases capable of digesting ECM components and are important molecules for cell migration. Binding of ECM to integrins initiates cascades of cell signaling events modulating expression and activity of different MMPs. The aim of this study is to investigate fibronectin–integrin-mediated signaling and modulation of MMPs. Our findings indicated that culture of human cervical cancer cell (SiHa) on fibronectin-coated surface perhaps sends signals via fibronectin–integrin-mediated signaling pathways recruiting focal adhesion kinase (FAK) extracellular signal regulated kinase (ERK), phosphatidyl inositol 3 kinase (PI-3K), integrin-linked kinase (ILK), nuclear factor-kappa B (NF-κB), and modulates expression and activation of mainly pro-MMP-9, and moderately pro-MMP-2 in serum-free culture medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Geiger B, Bershadsky A, Pankov R et al (2001) Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805

    Article  CAS  PubMed  Google Scholar 

  2. Danen EH, Yamada KM (2001) Fibronectin, integrins, and growth control. J Cell Physiol 189:1–13

    Article  CAS  PubMed  Google Scholar 

  3. Ivaska J, Heino J (2000) Adhesion receptors and cell invasion: mechanisms of integrin-guided degradation of extracellular matrix. Cell Mol Life Sci 57:16–24

    Article  CAS  PubMed  Google Scholar 

  4. Miyamoto S, Teramoto H, Coso OA et al (1995) Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol 131:791–805

    Article  CAS  PubMed  Google Scholar 

  5. Avraamides CJ, Garmy-Susini B, Varner JA (2008) Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer 8:604–617

    Article  CAS  PubMed  Google Scholar 

  6. Juliano RL (2002) Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu Rev Pharmacol Toxicol 42:283–323

    Article  CAS  PubMed  Google Scholar 

  7. Sawhney RS, Cookson MM, Omar Y et al (2006) Integrin alpha2-mediated ERK and calpain activation play a critical role in cell adhesion and motility via focal adhesion kinase signaling: identification of a novel signaling pathway. J Biol Chem 281:8497–8510

    Article  CAS  PubMed  Google Scholar 

  8. Hill CS, Treisman R (1995) Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell 80:199–211

    Article  CAS  PubMed  Google Scholar 

  9. Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9:726–735

    CAS  PubMed  Google Scholar 

  10. Hannigan G, Troussard AA, Dedhar S (2005) Integrin-linked kinase: a cancer therapeutic target unique among its ILK. Nat Rev Cancer 5:51–63

    Article  CAS  PubMed  Google Scholar 

  11. Hehlgans S, Haase M, Cordes N (2007) Signaling via integrins: implications for cell survival and anticancer strategies. Biochim Biophys Acta 1775:163–180

    CAS  PubMed  Google Scholar 

  12. Hofmann UB, Westphal JR, Van Kraats AA et al (2000) Expression of integrin alpha (v) beta (3) correlates with activation of membrane-type matrix metalloproteinase-1 (MT1-MMP) and matrix metalloproteinase-2 (MMP-2) in human melanoma cells in vitro and in vivo. Int J Cancer 87:12–19

    Article  CAS  PubMed  Google Scholar 

  13. Johansson S, Svineng G, Wennerberg K et al (1997) Fibronectin–integrin interactions. Front Biosci 2:126–146

    Google Scholar 

  14. Ruoslahti E (1999) Fibronectin and its integrin receptors in cancer. Adv Cancer Res 76:1–20

    Article  CAS  PubMed  Google Scholar 

  15. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  CAS  PubMed  Google Scholar 

  16. Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25:9–34

    Article  CAS  PubMed  Google Scholar 

  17. Livant DL, Brabec RK, Pienta KJ et al (2000) Anti-invasive, antitumorigenic, and antimetastatic activities of the PHSCN sequence in prostate carcinoma. Cancer Res 60:309–320

    CAS  PubMed  Google Scholar 

  18. Hocking DC, Sottile J, McKeown-Longo PJ (1998) Activation of distinct alpha5beta1-mediated signaling pathways by fibronectin’s cell adhesion and matrix assembly domains. J Cell Biol 141:241–253

    Article  CAS  PubMed  Google Scholar 

  19. Jia Y, Zeng ZZ, Markwart SM et al (2004) Integrin fibronectin receptors in matrix metalloproteinase-1-dependent invasion by breast cancer and mammary epithelial cells. Cancer Res 64:8674–8681

    Article  CAS  PubMed  Google Scholar 

  20. Han S, Ritzenthaler JD, Sitaraman SV et al (2006) Fibronectin increases matrix metalloproteinase 9 expression through activation of c-Fos via extracellular-regulated kinase and phosphatidylinositol 3-kinase pathways in human lung carcinoma cells. J Biol Chem 281:29614–29624

    Article  CAS  PubMed  Google Scholar 

  21. Han S, Ritzenthaler JD, Wingerd B et al (2007) Extracellular matrix fibronectin increases prostaglandin E2 receptor subtype EP4 in lung carcinoma cells through multiple signaling pathways: the role of AP-2. J Biol Chem 282:7961–7972

    Article  CAS  PubMed  Google Scholar 

  22. Thant AA, Nawa A, Kikkawa F et al (2000) Fibronectin activates matrix metalloproteinase-9 secretion via the MEK1-MAPK and the PI3K-Akt pathways in ovarian cancer cells. Clin Exp Metastasis 18:423–428

    Article  CAS  PubMed  Google Scholar 

  23. Segarra M, Vilardell C, Matsumoto K et al (2005) Dual function of focal adhesion kinase in regulating integrin-induced MMP-2 and MMP-9 release by human T lymphoid cells. FASEB J 19:1875–1877

    Article  PubMed  Google Scholar 

  24. Esparza J, Vilardell C, Calvo J et al (1999) Fibronectin upregulates gelatinase B (MMP-9) and induces coordinated expression of gelatinase A (MMP-2) and its activator MT1-MMP (MMP-14) by human T lymphocyte cell lines. A process repressed through RAS/MAP kinase signaling pathways. Blood 94:2754–2766

    CAS  PubMed  Google Scholar 

  25. Das S, Banerji A, Frei E et al (2008) Rapid expression and activation of MMP-2 and MMP-9 upon exposure of human breast cancer cells (MCF-7) to fibronectin in serum free medium. Life Sci 82:467–476

    Article  CAS  PubMed  Google Scholar 

  26. Mitra A, Chakrobarty J, Chatterjee A (2003) Binding of α5 monoclonal antibody to cell surface α5β1 integrin modulates MMP-2 and MMP-7 activity in B16F10 melanoma cells. J Environ Pathol Toxicol Oncol 22:167–178

    Article  CAS  PubMed  Google Scholar 

  27. Mitra A, Chakrabarti J, Banerji A et al (2004) Binding of α2 monoclonal antibody to human cervical tumour cell (SiHa) surface α2β1 integrin modulates MMP-2 activity. Gynecol Oncol 94:33–39

    Article  CAS  PubMed  Google Scholar 

  28. Chattopadhaya N, Mitra A, Frei E et al (2001) Human cervical tumor cell (SiHa) surface alphavbeta3 integrin receptor has associated matrix metalloproteinase (MMP-2) activity. J Cancer Res Clin Oncol 127:653–658

    Google Scholar 

  29. Bafetti LM, Young TN, Itoh Y et al (1998) Intact vitronectin induces matrix metalloproteinase-2 and tissue inhibitor of metalloproteinases-2 expression and enhanced cellular invasion by melanoma cells. J Biol Chem 273:143–149

    Article  CAS  PubMed  Google Scholar 

  30. Rolli M, Fransvea E, Oilch J et al (2003) Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc Natl Acad Sci USA 100:9482–9487

    Article  CAS  PubMed  Google Scholar 

  31. Mitra A, Chakrabarti J, Banerji A et al (2006) Culture of human cervical cancer cells, SiHa, in the presence of fibronectin activates MMP-2. J Cancer Res Clin Oncol 132:505–513

    Article  CAS  PubMed  Google Scholar 

  32. Murillo CA, Rychahou PG, Evers BM (2004) Inhibition of α5 integrin decreases PI3K activation and cell adhesion of human colon cancer. Surgery 136:143–149

    Article  PubMed  Google Scholar 

  33. Troussard AA, Costello P, Yoganathan TN et al (2000) The integrin linked kinase (ILK) induces an invasive phenotype via AP-1 transcription factor-dependent upregulation of matrix metalloproteinase 9 (MMP-9). Oncogene 19:5444–5452

    Article  CAS  PubMed  Google Scholar 

  34. Chakrobarty J, Mitra A, Banerji A et al (2006) Culture of human fibrosarcoma HT-1080 cells in presence of fibronectin activates MMP-2. J Environ Pathol Toxicol Oncol 25:667–677

    Google Scholar 

  35. Kenny A, Kaur S, Coussens LM et al (2008) The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J Clin Invest 118:1367–1379

    Article  CAS  PubMed  Google Scholar 

  36. Banerji A, Das S, Chatterjee A (2008) Culture of human A375 melanoma cells in the presence of fibronectin causes expression of MMP-9 and activation of MMP-2 in culture supernatants. J Environ Pathol Toxicol Oncol 27:135–145

    CAS  PubMed  Google Scholar 

  37. Kato Y, Yamashita T, Ishikawa M (2002) Relationship between expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 and invasion ability of cervical cancer cells. Oncol Rep 9:565–569

    CAS  PubMed  Google Scholar 

  38. Bannikov GA, Karelina TV, Collier IE et al (2002) Substrate binding of gelatinase B induces its enzymatic activity in the presence of intact propeptide. J Biol Chem 277:16022–16027

    Article  CAS  PubMed  Google Scholar 

  39. Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477:267–283

    CAS  PubMed  Google Scholar 

  40. Wilhelm SM, Collier IE, Marmer BL et al (1989) SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem 264:17213–17221

    CAS  PubMed  Google Scholar 

  41. Munshi HG, Stack MS (2006) Reciprocal interactions between adhesion receptor signaling and MMP regulation. Cancer Metastasis Rev 25:45–56

    Article  CAS  PubMed  Google Scholar 

  42. Kwon GT, Cho HJ, Chung WY et al. (2009) Isoliquiritigenin inhibits migration and invasion of prostate cancer cells: possible mediation by decreased JNK/AP-1 signaling. J Nutr Biochem 20(9):663–676

    Google Scholar 

  43. Lim YC, Park HY, Hwang HS et al (2008) (−)-Epigallocatechin-3-gallate (EGCG) inhibits HGF-induced invasion and metastasis in hypopharyngeal carcinoma cells. Cancer Lett 271:140–152

    Article  CAS  PubMed  Google Scholar 

  44. Van den Steen EP, Dubois B, Nelissen I et al (2002) Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 37:375–536

    Article  PubMed  Google Scholar 

  45. Takahra T, Smart DE, Oakley F et al (2004) Induction of myofibroblast MMP-9 transcription in three-dimensional collagen I gel cultures: regulation by NF-kappaB, AP-1 and Sp1. Int J Biochem Cell Biol 36:353–363

    Article  CAS  PubMed  Google Scholar 

  46. Farina AR, Tacconelli A, Vacca A et al (1999) Transcriptional up-regulation of matrix metalloproteinase-9 expression during spontaneous epithelial to neuroblast phenotype conversion by SK-N-SH neuroblastoma cells, involved in enhanced invasivity, depends upon GT-box and nuclear factor kappa B elements. Cell Growth Differ 10:353–367

    CAS  PubMed  Google Scholar 

  47. Sato H, Seiki M (1993) Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene 8:395–405

    CAS  PubMed  Google Scholar 

  48. Taheri F, Bazan HE (2007) Platelet-activating factor overturns the transcriptional repressor disposition of Sp1 in the expression of MMP-9 in human corneal epithelial cells. Invest Ophthalmol Vis Sci 48:1931–1941

    Article  PubMed  Google Scholar 

  49. Sato H, Kita M, Seiki M (1993) V-Src activates the expression of 92-kDa type IV collagenase gene through the AP-1 site and the GT box homologous to retinoblastoma control elements. J Biol Chem 268:23460–23468

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support and inspiration received from Dr. Jaydip Biswas, Director, CNCI, and the financial support from Department of Science and Technology, New Delhi (Grant No. SR/SO/HS-59/2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maity, G., Fahreen, S., Banerji, A. et al. Fibronectin–integrin mediated signaling in human cervical cancer cells (SiHa). Mol Cell Biochem 336, 65–74 (2010). https://doi.org/10.1007/s11010-009-0256-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0256-5

Keywords

Navigation