Skip to main content
Log in

Equilibrium Joining Strategies in the Retrial Queue with Two Classes of Customers and Delayed Vacations

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

We consider a non-preemptive priority M/M/1 retrial queue with two classes of customers (low-priority and high-priority customers) and delayed vacations. When the server is unavailable, an arriving high-priority customer can wait in line, whereas an arriving low-priority customer needs to enter a virtual queue and retry later. After completing a service, the server will remain idle for a reserved idle time if it finds no high-priority customers in the system. Arrivals during the reserved idle period will be served immediately. Otherwise, if no customers arrive during this interval, the server will switch to the vacation state. By constructing a three-dimensional Markov chain, we successively obtain the stability condition of the system and some main performance measures. Then depending on a linear reward-cost structure, we derive customers’ two-dimensional equilibrium joining strategies in the fully unobservable case. Due to the complexity of the social welfare function, we explore the socially optimal joining strategies through the Particle Swarm Optimization (PSO) algorithm. Finally, we illustrate the impact of system parameters on the two types of joining strategies via numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Artalejo JR, Gómez-Corral A (2008) Retrial Queueing Systems: A Computational Approach. Springer, Berlin

    Book  MATH  Google Scholar 

  • Bhagat A, Jain M (2020) Retrial queue with multiple repairs, multiple services and non preemptive priority. Opsearch 57(3):787–814

    Article  MathSciNet  MATH  Google Scholar 

  • Boudali O, Economou A (2012) Optimal and equilibrium balking strategies in the single server Markovian queue with catastrophes. Eur J Oper Res 218(3):708–715

    Article  MathSciNet  MATH  Google Scholar 

  • Bountali O, Economou A (2017) Equilibrium joining strategies in batch service queueing systems. Eur J Oper Res 260(3):1142–1151

    Article  MathSciNet  MATH  Google Scholar 

  • Burnetas A, Economou A (2007) Equilibrium customer strategies in a single server Markovian queue with setup times. Queueing Systems 56(3):213–228

    Article  MathSciNet  MATH  Google Scholar 

  • Choi BD, Park KK (1990) The M/G/1 retrial queue with Bernoulli schedule. Queueing systems 7(2):219–228

    Article  MathSciNet  MATH  Google Scholar 

  • Dimitriou I (2013a) A mixed priority retrial queue with negative arrivals, unreliable server and multiple vacations. Appl Math Model 37(3):1295–1309

    Article  MathSciNet  MATH  Google Scholar 

  • Dimitriou I (2013b) A preemptive resume priority retrial queue with state dependent arrivals, unreliable server and negative customers. TOP 21(3):542–571

    Article  MathSciNet  MATH  Google Scholar 

  • Dimitriou I (2022) Stationary analysis of certain Markov-modulated reflected random walks in the quarter plane. Ann Oper Res 310(2):355–387

    Article  MathSciNet  MATH  Google Scholar 

  • Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp 39–43

  • Economou A, Kanta S (2011) Equilibrium customer strategies and social-profit maximization in the single-server constant retrial queue. Nav Res Logist (NRL) 58(2):107–122

    Article  MathSciNet  MATH  Google Scholar 

  • Edelson NM, Hilderbrand DK (1975) Congestion tolls for Poisson queuing processes. Econometrica 43(1):81–92

    Article  MathSciNet  MATH  Google Scholar 

  • Falin GI, Templeton JGC (1997) Retrial queues. Chapman & Hall, London

    Book  MATH  Google Scholar 

  • Frey A, Takahashi Y (1999) An \({M^X/GI/1/N}\) queue with close-down and vacation times. J Appl Math Stoch Anal 12(1):63–83

  • Gao S, Zhang J (2019) Strategic joining and pricing policies in a retrial queue with orbital search and its application to call centers. IEEE Access 7:129,317–129,326

  • Guo P, Hassin R (2011) Strategic behavior and social optimization in Markovian vacation queues. Oper Res 59(4):986–997

    Article  MathSciNet  MATH  Google Scholar 

  • Guo P, Hassin R (2012) Strategic behavior and social optimization in Markovian vacation queues: The case of heterogeneous customers. Eur J Oper Res 222(2):278–286

    Article  MathSciNet  MATH  Google Scholar 

  • Hassan M, Atiquzzaman M (1997) A delayed vacation model of an M/G/1 queue with setup time and its application to SVCC-based ATM networks. IEICE Trans Commun 80(2):317–323

    Google Scholar 

  • Hassin R (2016) Rational queueing. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Hassin R, Haviv M (2003) To queue or not to queue: Equilibrium behavior in queueing systems. Kluwer, Boston

    Book  MATH  Google Scholar 

  • Kapodistria S, Palmowski Z (2017) Matrix geometric approach for random walks: Stability condition and equilibrium distribution. Stoch Model 33(4):572–597

    Article  MathSciNet  MATH  Google Scholar 

  • Kerner Y, Shmuel-Bittner O (2020) Strategic behavior and optimization in a hybrid M/M/1 queue with retrials. Queueing Systems 96:285–302

    Article  MathSciNet  Google Scholar 

  • Kim B, Kim J (2017) Waiting time distributions in an M/G/1 retrial queue with two classes of customers. Ann Oper Res 252:121–134

    Article  MathSciNet  MATH  Google Scholar 

  • Kulkarni V (1983) A game theoretic model for two types of customers competing for service. Oper Res Lett 2(3):119–122

    Article  MathSciNet  MATH  Google Scholar 

  • Li K, Wang J (2021) Equilibrium balking strategies in the single-server retrial queue with constant retrial rate and catastrophes. Quality Technology & Quantitative Management 18(2):156–178

    Article  Google Scholar 

  • Naor P (1969) The regulation of queue size by levying tolls. Econometrica 37(1):15–24

    Article  MATH  Google Scholar 

  • Neuts MF (1981) Matrix-geometric solutions in stochastic models: an algorithmic approach. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  • Nguyen HQ, Phung-Duc T (2022) Strategic customer behavior and optimal policies in a passenger-taxi double-ended queueing system with multiple access points and nonzero matching times. Queueing Systems 102(3–4):481–508

    Article  MathSciNet  MATH  Google Scholar 

  • Tang Y, Guo P, Wang Y (2018) Equilibrium queueing strategies of two types of customers in a two-server queue. Oper Res Lett 46(1):99–102

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J (2008) On the single server retrial queue with priority subscribers and server breakdowns. J Syst Sci Complex 21(2):304–315

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J, Li WW (2015) Noncooperative and Cooperative Joining Strategies in Cognitive Radio Networks with Random Access. IEEE Trans Veh Technol 65(7):5624–5636

    Article  Google Scholar 

  • Wang J, Zhang F (2016) Monopoly pricing in a retrial queue with delayed vacations for local area network applications. IMA J Manag Math 27(2):315–334

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J, Zhang X, Huang P (2017) Strategic behavior and social optimization in a constant retrial queue with the N-policy. Eur J Oper Res 256(3):841–849

    Article  MathSciNet  MATH  Google Scholar 

  • Wang LL, Liu LW, Chai XD et al (2022) On Equilibrium in a Constant Retrial Queuing System with Reserved Time and Vacations. Journal of the Operations Research Society of China 10:785–800

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Z, Wang J (2021) Strategic priority-purchasing and joining rules in a retrial queue. IMA J Manag Math 32(2):161–194

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang F, Wang J, Liu B (2013) Equilibrium balking strategies in Markovian queues with working vacations. Appl Math Model 37(16–17):8264–8282

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Y, Wang J (2017) Equilibrium pricing in an M/G/1 retrial queue with reserved idle time and setup time. Appl Math Model 49:514–530

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Y, Wang J, Wang F (2016) Equilibrium pricing strategies in retrial queueing systems with complementary services. Appl Math Model 40(11–12):5775–5792

    Article  MathSciNet  MATH  Google Scholar 

  • Ziani S, Rahmoune F, Radjef MS (2015) Customers’ strategic behavior in batch arrivals \({M^2/M/1}\) queue. Eur J Oper Res 247(3), 895–903

Download references

Acknowledgements

The authors are grateful to the anonymous referees and editors for their constructive comments and feedback that significantly improved this work. This work is supported by The National Natural Science Foundation of China (No. 61773014).

Funding

This work is supported by The National Natural Science Foundation of China (No. 61773014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianyue Shi or Liwei Liu.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1

Proof

We define the generator H as the following form

$$\begin{aligned} H=A+B+C=\left\{ \begin{array}{ccccccccccccccc} \eta _{4} &{} {\lambda _1} + \theta &{} \lambda _{2}&{} \alpha &{} &{}&{}&{}&{}&{}&{}&{}&{}&{}&{}\\ \mu _{1} &{} {\bar{\eta }_1} &{} &{} &{} \lambda _{2}&{} &{}&{}&{}&{}&{}&{}&{}&{}&{}\\ \mu _{2} &{} &{}{\bar{\eta }_2}&{} &{} &{}\lambda _{2} &{}&{}&{}&{}&{}&{}&{}&{}&{}\\ \beta &{} &{}0 &{}{\bar{\eta }_3}&{} &{} &{}\lambda _{2}&{} &{}&{}&{}&{}&{}&{}&{}\\ &{} &{} \mu _{1} &{} &{}{\bar{\eta }_1} &{} &{} &{}\lambda _{2}&{} &{}&{}&{}&{}&{}&{}\\ &{} &{} \mu _{2} &{} &{} &{}{\bar{\eta }_2} &{} &{}&{}\lambda _{2}&{}&{}&{}&{}&{}&{} \\ &{} &{} \beta &{} &{} &{}0&{}{\bar{\eta }_3}&{}&{}&{}\lambda _{2}&{}&{}&{}&{}&{}\\ &{} &{} &{} &{} &{}\mu _{1} &{} &{}{\bar{\eta }_1}&{}&{}&{}\lambda _{2}&{}&{}&{}&{} \\ &{} &{} &{} &{} &{}\mu _{2} &{}&{}&{}{\bar{\eta }_2}&{}&{}&{}\lambda _{2}&{}&{}\\ &{} &{} &{} &{} &{}\beta &{}&{}&{}0&{}{\bar{\eta }_3}&{}&{}&{}\lambda _{2}&{}\\ \ &{} &{} &{} &{} &{} &{}&{}&{}\vdots &{}&{}\ddots &{}&{}&{}\ddots \\ \end{array}\right\} . \end{aligned}$$

By reference to Neuts (1981) and Kapodistria and Palmowski (2017), the QBD drift condition is \({\pi Ce} < {\pi Ae}\), where \({\pi } = \left( {{\pi _0},{\pi _1},{\pi _2}, \cdots } \right)\) satisfies \({\pi H} ={0}\) and \({\pi e} = 1\), in which e is a column vector of 1’s. Then by expanding the matrix vector equation \({\pi H} = {0}\), we get the following equations

$$\begin{aligned} - \left( {{\lambda _{1} + \lambda }_{2} + \alpha + \theta } \right) \pi _{0} + \mu _{1}\pi _{1} + \mu _{2}\pi _{2} + \beta \pi _{3} = 0, \end{aligned}$$
(47)
$$\begin{aligned} ({\lambda _1} + \theta ){\pi _0} - ({\lambda _2} + {\mu _1}){\pi _1} = 0 , \end{aligned}$$
(48)
$$\begin{aligned} {\lambda _2}{\pi _0} - \left( {{\lambda _2} + {\mu _2}} \right) {\pi _2} + {\mu _1}{\pi _4} + {\mu _2}{\pi _5} + \beta {\pi _6} = 0 , \end{aligned}$$
(49)
$$\begin{aligned} \alpha {\pi _0} - \left( {{\lambda _2} + \beta } \right) {\pi _3} = 0 , \end{aligned}$$
(50)
$$\begin{aligned} \lambda _{2}\pi _{i} - \left( {\lambda _{2} + \mu _{1}} \right) \pi _{i + 3} = 0 , \end{aligned}$$
(51)
$$\begin{aligned} \lambda _{2}\pi _{i + 1} - \left( {\lambda _{2} + \mu _{2}} \right) \pi _{i + 4} + \mu _{1}\pi _{i + 6} + \mu _{2}\pi _{i + 7} + \beta \pi _{i + 8} = 0 , \end{aligned}$$
(52)
$$\begin{aligned} \lambda _{2}\pi _{i + 2} - \left( {\lambda _{2} + \beta } \right) \pi _{i + 5} = 0 , \end{aligned}$$
(53)

where \(i=1,4,7\cdots\), then by iterating Eqs. 51 and 53 and combining Eqs. 48 and 50, we have

$$\begin{aligned} \pi _{i} = \frac{\lambda _{1} + \theta }{\lambda _{2} + \mu _{1}}\left( \frac{\lambda _{2}}{\lambda _{2} + \mu _{1}} \right) ^{\frac{i - 1}{3}}\pi _{0} , \end{aligned}$$
(54)
$$\begin{aligned} \pi _{i+2}=\frac{\alpha }{\lambda _2+\beta }\left( \frac{\lambda _2}{\lambda _2+\beta }\right) ^\frac{i-1}{3}\pi _0 . \end{aligned}$$
(55)

From Eqs. 54 and 55, we can derive

$$\begin{aligned} {\pi _1} + {\pi _4} + {\pi _7} + \cdots = \frac{{{\lambda _1} + \theta }}{{{\mu _1}}}{\pi _0}, \end{aligned}$$
(56)
$$\begin{aligned} {\pi _3} + {\pi _6} + {\pi _9} + \cdots = \frac{\alpha }{\beta }{\pi _0}\mathrm{{\;}}. \end{aligned}$$
(57)

Rearranging Eqs. 49 and 52 yields

$$\begin{aligned} {\left\{ \begin{array}{ll} {\lambda _2}\left( {{\pi _0} - {\pi _2}} \right) = {\mu _2}\left( {{\pi _2} - {\pi _5}} \right) - {\mu _1}{\pi _4} - \beta {\pi _6}\\ {\lambda _2}\left( {{\pi _2} - {\pi _5}} \right) = {\mu _2}\left( {{\pi _5} - {\pi _8}} \right) - {\mu _1}{\pi _7} - \beta {\pi _9}\\ {\lambda _2}\left( {{\pi _5} - {\pi _8}} \right) = {\mu _2}\left( {{\pi _8} - {\pi _{11}}} \right) - {\mu _1}{\pi _{10}} - \beta {\pi _{12}}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\cdots \end{array}\right. } \end{aligned}$$
(58)

Then, summed up the equations in Eq. 58 sequentially in the order from top to bottom, we get

$$\begin{aligned} \pi _{2} = \rho _{2}\pi _{0} + \frac{\mu _{1}}{\mu _{2}}\left( {\pi _{4} + \pi _{7} + \cdots } \right) + \frac{\beta }{\mu _{2}}\left( {\pi _{6} + \pi _{9} + \cdots } \right) , \end{aligned}$$
(59)
$$\begin{aligned} {\pi _{i + 1}} = {\rho _2}{\pi _{i - 2}} + \frac{{{\mu _1}}}{{{\mu _2}}}\left( {{\pi _{i + 3}} + {\pi _{i + 6}} + \cdots } \right) + \frac{\beta }{{{\mu _2}}}\left( {{\pi _{i + 5}} + {\pi _{i + 8}} + \cdots } \right) , \end{aligned}$$
(60)

where \({\rho _2} = \frac{{{\lambda _2}}}{{{\mu _2}}}\) and \(i=4,7\cdots\). Next, summing all the equations in Eqs. 59 and 60, then combining Eqs. 54 and 55, we have

$$\begin{aligned} \ \pi _0+\pi _2+\pi _5+\cdots =\frac{\pi _0\mu _2}{\mu _2-\lambda _2}\left( 1+\frac{\lambda _2\left( \lambda _1+\theta \right) }{\mu _1\mu _2}+\frac{\lambda _2\alpha }{\mu _2\beta }\right) , \end{aligned}$$
(61)

Notice that \({\pi e}=1\), then combining Eqs. 56, 57 and 61, we get

$$\begin{aligned} \left( {\frac{{{\lambda _1} + \theta }}{{{\mu _1}}} + \frac{\alpha }{\beta }} \right) {\pi _0} + \left( {\frac{{{\mu _2}}}{{{\mu _2} - {\lambda _2}}} + \frac{{{\lambda _2}\left( {{\lambda _1} + \theta } \right) }}{{{\mu _1}\left( {{\mu _2} - {\lambda _2}} \right) }} + \frac{{{\lambda _2}\alpha }}{{\beta \left( {{\mu _2} - {\lambda _2}} \right) }}} \right) {\pi _0} = 1. \end{aligned}$$
(62)

That is

$$\begin{aligned} {\pi _0} = \frac{{{\mu _1}\beta \left( {{\mu _2} - {\lambda _2}} \right) }}{{{\mu _1}{\mu _2}\beta + {\mu _2}\beta \left( {{\lambda _1} + \theta } \right) + {\mu _1}{\mu _2}\alpha }}. \end{aligned}$$
(63)

Then using the inequality \(\pi Ce < \pi Ae\), we obtain \(\frac{{{\lambda _1}}}{{{\lambda _1} + \theta }} < {\pi _0}\). Combining with Eq. 63 yields Theorem 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Liu, L. Equilibrium Joining Strategies in the Retrial Queue with Two Classes of Customers and Delayed Vacations. Methodol Comput Appl Probab 25, 52 (2023). https://doi.org/10.1007/s11009-023-10029-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11009-023-10029-y

Keywords

Mathematics Subject Classification (2020)

Navigation