Skip to main content
Log in

A New Class of Multivariate Elliptically Contoured Distributions with Inconsistency Property

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

We introduce a new class of multivariate elliptically symmetric distributions including elliptically symmetric logistic distributions and Kotz type distributions. We investigate the various probabilistic properties including marginal distributions, conditional distributions, linear transformations, characteristic functions and dependence measure in the perspective of the inconsistency property. In addition, we provide a real data example to show that the new distributions have reasonable flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali MM, Mikhail NN, Haq MS (1978) A class of bivariate distributions including the bivariate logistic. J Multivar Anal 8:405–412

    Article  MathSciNet  Google Scholar 

  • Arashi M, Nadarajah S (2016) Generalized elliptical distributions. Communications in Statistics-Theory and Methods 46:6412–6432

    Article  MathSciNet  Google Scholar 

  • Bairamov I, Kotz S, Kozubowski TJ (2003) A new measure of liner local dependence. Statistics 37(3):243–258

    Article  MathSciNet  Google Scholar 

  • Balakrishnan N, Leung MY (1988) Order statistics from the type I generalized logistic distribution. Communications in Statistics-Simulation and Computation 17(1):25–50

    Article  Google Scholar 

  • Chakraborty S, Hazarika PJ, Ali MM (2012) A new skew logistic distribution and its properties. Pak J Stat 28(4):513–524

    MathSciNet  Google Scholar 

  • Cambanis S, Huang S, Simons G (1981) On the theory of elliptically contoured distributions. J Multivar Anal 11:368–385

    Article  MathSciNet  Google Scholar 

  • Fang KT, Kotz S, Ng KW (1990) Symmetric multivariate and related distributions. Chapman and Hall, London

    Book  Google Scholar 

  • Ghosh I, Alzaatreh A (2018) A new class of generalized logistic distribution. Communications in Statistics - Theory and Methods 47(9):2043–2055

    Article  MathSciNet  Google Scholar 

  • Gupta RD, Kundu D (2010) Generalized logistic distributions. Journal of Applied Statistical Science 18(1): 1–23

    MathSciNet  Google Scholar 

  • Jensen DR (1985) Multivariate distributions. In: Kotz S, Johnson N L, Read C B (eds) Encyclopedia of statistical sciences, vol 6, pp 43–45

  • Kano Y (1994) Consistency property of elliptical probability density functions. J Multivar Anal 51:139–147

    Article  MathSciNet  Google Scholar 

  • Kotz S, Ostrovskii I (1994) Characteristic functions of a class of elliptical distributions. J Multivar Anal 49:164–178

    Article  MathSciNet  Google Scholar 

  • Landsman Z, Valdez EA (2003) Tail conditional expectations for elliptical distributions. North American Actuarial Journal 7(4):55–71

    Article  MathSciNet  Google Scholar 

  • Landsman Z, Makov U, Shushi T (2016a) Multivariate tail conditional expectation for elliptical distributions. Insurance: Mathematics and Economics 70:216–223

    MathSciNet  MATH  Google Scholar 

  • Landsman Z, Makov U, Shushi T (2016b) Tail conditional moments for elliptical and log-elliptical distributions and applications. Insurance: Mathematics and Economics 71:179–188

    MathSciNet  MATH  Google Scholar 

  • Landsman Z, Makov U, Shushi T (2018) A multivariate tail covariance measure for elliptical distributions. Insurance: Mathematics and Economics 81:27–35

    MathSciNet  MATH  Google Scholar 

  • Liang JJ, Bentler PM (1998) Characterizations of some subclasses of spherical distributions. Statistics & Probability Letters 40:155–164

    Article  MathSciNet  Google Scholar 

  • Lin SD, Srivastava HM, Wang PY (2006) Some expansion formulas for a class of generalized Hurwitz-Lerch Zeta functions. Integral Transforms and Special Functions 17:817–827

    Article  MathSciNet  Google Scholar 

  • Nadarajah S (2003) The Kotz-type distribution with applications. Statistics: A Journal of Theoretical and Applied Statistics 37(4):341–358

    Article  MathSciNet  Google Scholar 

  • Yin CC, Wang YS, Sha XY (2019) A new class of symmetric distributions including the elliptically symmetric logistic. arXiv:1810.10692

Download references

Acknowledgments

The authors are grateful to the referee and the Editor whose comments and suggestions greatly improved the article.

The research was supported by the National Natural Science Foundation of China (No. 11171179, 11571198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuancun Yin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proofs

Appendix A: Proofs

1.1 A.1. Proof of (5.1)–(5.4)

Proof

When the dimension n > 1, Ωn(∥t2) defined as

$$ {\Omega}_{n}(\|t\|^{2})=\frac{\Gamma(\frac{n}{2})}{\sqrt{\pi}}\sum\limits_{k=0}^{\infty}\frac{(-1)^{k}\|t\|^{2k}}{(2k)!} \frac{\Gamma(\frac{2k+1}{2})}{\Gamma(\frac{n+2k}{2})}, $$

we have the characteristic function as follows.

$$ \begin{array}{@{}rcl@{}} \psi_{\textbf{X}}(\textbf{t})&=&E(e^{i\textbf{t}^{\textit{T}}\textbf{X}}) =e^{i\textbf{t}^{\textit{T}}\boldsymbol{\mu}}E(e^{i\textbf{t}^{\textit{T}}R\boldsymbol{\Sigma}^{\frac{1}{2}}\textbf{U}^{(n)}}) =e^{i\textbf{t}^{\textit{T}}\boldsymbol{\mu}}E[{\Omega}_{n}(R^{2}\textbf{t}^{\textit{T}}\boldsymbol{\Sigma}\textbf{t})]\\ &=&e^{i\textbf{t}^{\textit{T}}\boldsymbol{\mu}}{\int}_{0}^{\infty}{\Omega}_{n}(v\textbf{t}^{\textit{T}}\boldsymbol{\Sigma}\textbf{t}) \frac{1}{{\int}_{0}^{\infty}t^{\frac{n}{2}-1}g_{n}(t)dt}v^{\frac{n}{2}-1}\frac{v^{N-1}\exp(-av^{s})}{(1+\exp(-bv^{s}))^{2r}}dv\\ &=&e^{i\textbf{t}^{\textit{T}}\boldsymbol{\mu}}\left[{\int}_{0}^{\infty}\frac{t^{\frac{n}{2}+N-2}\exp(-at^{s})}{(1+ \exp(-bt^{s}))^{2r}} \right]^{-1} {\int}_{0}^{\infty}{\Omega}_{n}(v\textbf{t}^{\textit{T}}\boldsymbol{\Sigma}\textbf{t}) \frac{v^{\frac{n}{2}+N-2}\exp(-av^{s})}{(1+\exp(-bv^{s}))^{2r}}dv\\ &=&e^{i\textbf{t}^{\textit{T}}\boldsymbol{\mu}}\left[\frac{\Gamma(\frac{1}{s}(\frac{n}{2}+N-1))}{b^{\frac{1}{s} (\frac{n}{2}+N-1)}s} {\Phi}_{2r}^{*}(-1,\frac{1}{s}(\frac{n}{2}+N-1),\frac{a}{b})\right]^{-1}\\ &&\times{\int}_{0}^{\infty}\frac{\Gamma(\frac{n}{2})}{\pi^{\frac{1}{2}}}\sum\limits_{k=0}^{\infty} \frac{(-1)^{k}(\textbf{t}^{\textit{T}}\boldsymbol{\Sigma}\textbf{t})^{k}v^{k}{\Gamma}(\frac{2k+1}{2})}{(2k)!{\Gamma}(\frac{n+2k}{2})} \frac{v^{\frac{n}{2}+N-2}\exp(-av^{s})}{(1+\exp(-bv^{s}))^{2r}}dv\\ &=&e^{i\textbf{t}^{\textit{T}}\boldsymbol{\mu}}\left[\frac{\Gamma(\frac{1}{s}(\frac{n}{2}+N-1))}{b^{\frac{1}{s} (\frac{n}{2}+N-1)}s} {\Phi}_{2r}^{*}(-1,\frac{1}{s}(\frac{n}{2}+N-1),\frac{a}{b})\right]^{-1}\\ &&\times\sum\limits_{k=0}^{\infty}\frac{\Gamma(\frac{n}{2})}{\pi^{\frac{1}{2}}} \frac{(-1)^{k}(\textbf{t}^{\textit{T}}\boldsymbol{\Sigma}\textbf{t})^{k}{\Gamma}(\frac{2k+1}{2})}{(2k)!{\Gamma}(\frac{n+2k}{2})} {\int}_{0}^{\infty}\frac{v^{\frac{n}{2}+N+k-2}\exp(-av^{s})}{(1+\exp(-bv^{s}))^{2r}}dv\\ &=&e^{it^{\textit{T}}\boldsymbol{\mu}}\left[\frac{\Gamma(\frac{1}{s}(\frac{n}{2}+N-1))}{b^{\frac{1}{s}(\frac{n}{2}+N-1)}s} {\Phi}_{2r}^{*}(-1,\frac{1}{s}(\frac{n}{2}+N-1),\frac{a}{b})\right]^{-1}\\ &&\times\sum\limits_{k=0}^{\infty}\frac{\Gamma(\frac{n}{2})}{\pi^{\frac{1}{2}}} \frac{(-1)^{k}(\textbf{t}^{\textit{T}}\boldsymbol{\Sigma}\textbf{t})^{k}{\Gamma}(\frac{2k+1}{2})}{(2k)!{\Gamma}(\frac{n+2k}{2})} \frac{\Gamma(\frac{1}{s}(\frac{n}{2}+N - 1))}{b^{\frac{1}{s}(\frac{n}{2}+N-1)}s} {\Phi}_{2r}^{*}(-1,\frac{1}{s}(\frac{n}{2}+N - 1),\frac{a}{b})\\ &=&e^{i\textbf{t}^{\textit{T}}\boldsymbol{\mu}}\frac{\Gamma(\frac{n}{2})}{\pi^{\frac{1}{2}}}\sum\limits_{k=0}^{\infty} \frac{(-1)^{k}}{(2k)!}\frac{\Gamma(k+\frac{1}{2}){\Gamma}(\frac{1}{s}(\frac{n}{2}+N+k-1))}{\Gamma(k+\frac{n}{2}) {\Gamma}(\frac{1}{s}(\frac{n}{2}+N-1))b^{\frac{1}{s}(\frac{n}{2}+N-1)}}\\ &&\times\frac{{\Phi}_{2r}^{*}(-1,\frac{1}{s}(\frac{n}{2}+N+k-1),\frac{a}{b})}{{\Phi}_{2r}^{*}(-1,\frac{1}{s}(\frac{n}{2}+N-1), \frac{a}{b})} (\textbf{t}^{\textit{T}}\boldsymbol{\Sigma}\textbf{t})^{k}\\ &=&e^{i\textbf{t}^{\textit{T}}\boldsymbol{\mu}}\sum\limits_{k=0}^{\infty}\frac{(-1)^{k}}{(2k)!}\gamma_{k} \frac{{\Phi}_{2r}^{*}(-1,\frac{1}{s}(\frac{n}{2}+N+k-1),\frac{a}{b})}{{\Phi}_{2r}^{*}(-1,\frac{1}{s}(\frac{n}{2}+N-1),\frac{a}{b})} (\textbf{t}^{\textit{T}}\boldsymbol{\Sigma}\textbf{t})^{k}, \end{array} $$

where

$$ \gamma_{k}(N,n,b,s)=\frac{\Gamma(\frac{n}{2})}{\pi^{\frac{1}{2}}b^{\frac{1}{s}(\frac{n}{2}+N-1)}} \frac{\Gamma(k+\frac{1}{2}){\Gamma}(\frac{1}{s}(\frac{n}{2}+N+k-1))}{\Gamma(k+\frac{n}{2}){\Gamma}(\frac{1}{s}(\frac{n}{2}+N-1))}. $$

Here \({\Phi }_{2r}^{*}\) is the generalized Hurwitz-Lerch zeta function.

When the dimension n > 1, Ωn(∥t2) defined as

$$ {\Omega}_{n}(\|t\|^{2})=_{0}F_{1}(\frac{n}{2};-\frac{1}{4}\|t\|^{2}), $$

we have the characteristic function as follows.

$$ \begin{array}{@{}rcl@{}} \psi_{\textbf{X}}(\textbf{t})&=&e^{i\textbf{t}^{\textit{T}}\boldsymbol{\mu}}E[{\Omega}_{n}(R^{2}\textbf{t}^{\prime} \boldsymbol{\Sigma}\textbf{t})]\\ &=&e^{i\textbf{t}^{\textit{T}}\boldsymbol{\mu}}\left[{\int}_{0}^{\infty}\frac{t^{\frac{n}{2}+N-2}\exp(-at^{s})}{(1+ \exp(-bt^{s}))^{2r}}\right]^{-1} {\int}_{0}^{\infty}{\Omega}_{n}(v\textbf{t}^{\textit{T}}\boldsymbol{\Sigma}\textbf{t})\frac{v^{\frac{n}{2}+N-2}\exp(-av^{s})} {(1+\exp(-bv^{s}))^{2r}}dv\\ &=&e^{i\textbf{t}^{\textit{T}}\boldsymbol{\mu}}\left[\frac{\Gamma(\frac{1}{s}(\frac{n}{2}+N-1))}{b^{\frac{1}{s} (\frac{n}{2}+N-1)}s} {\Phi}_{2r}^{*}(-1,\frac{1}{s}(\frac{n}{2}+N-1),\frac{a}{b})\right]^{-1}\\ &&\times{\int}_{0}^{\infty} {~}_{0}F_{1}(\frac{n}{2};\frac{1}{4}v\textbf{t}^{\textit{T}}{\Sigma}\textbf{t})\frac{v^{\frac{n}{2}+N-2}\exp(-av^{s})} {(1+\exp(-bv^{s}))^{2r}}dv\\ &=&e^{i\textbf{t}^{\textit{T}}\boldsymbol{\mu}}\left[\frac{\Gamma(\frac{1}{s}(\frac{n}{2}+N-1))}{b^{\frac{1}{s} (\frac{n}{2}+N-1)}s} {\Phi}_{2r}^{*}(-1,\frac{1}{s}(\frac{n}{2}+N-1),\frac{a}{b})\right]^{-1}\\ &&\times\sum\limits_{k=0}^{\infty}\frac{\Gamma(\frac{1}{s}(\frac{n}{2}+N-1))}{b^{\frac{1}{s}(\frac{n}{2}+N-1)}s} \frac{(\textbf{t}^{\textit{T}}{\Sigma} \textbf{t})^{k}}{4^{k}(\frac{n}{2})^{[k]}k!}{\Phi}_{2r}^{*}(-1,\frac{1}{s}(\frac{n}{2}+N+k-1),\frac{a}{b})\\ &=&e^{i\textbf{t}^{\textit{T}}\boldsymbol{\mu}}\sum\limits_{k=0}^{\infty} \frac{\Gamma(\frac{1}{s}(\frac{n}{2} + N+k-1))}{\Gamma(\frac{1}{s}(\frac{n}{2} + N - 1))b^{\frac{k}{s}}4^{k}(\frac{n}{2})^{[k]}k!} \frac{{\Phi}_{2r}^{*}(-1,\frac{1}{s}(\frac{n}{2}+N+k-1),\frac{a}{b})}{{\Phi}_{2r}^{*}(-1,\frac{1}{s}(\frac{n}{2}+N-1),\frac{a}{b})} (\textbf{t}^{\textit{T}}\boldsymbol{\Sigma} \textbf{t})^{k}. \end{array} $$

Thus, we have characteristic generators as follows:

$$ \begin{array}{@{}rcl@{}} \phi_{\textbf{X}}(\|\textbf{u}_{n}\|^{2}) &=&\sum\limits_{k=0}^{\infty} \frac{(-1)^{k}}{(2k)!}\gamma_{k}(N,n,b,s) \frac{{\Phi}_{2r}^{*}(-1,\frac{1}{s}(\frac{n}{2}+N+k-1),\frac{a}{b})}{{\Phi}_{2r}^{*}(-1,\frac{1}{s}(\frac{n}{2}+N-1),\frac{a}{b})} (\|\textbf{u}_{n}\|)^{2k},\\ \phi_{\textbf{X}}(\|\textbf{u}_{n}\|^{2}) &=&\sum\limits_{k=0}^{\infty} \frac{\Gamma(\frac{1}{s}(\frac{n}{2}+N+k-1))}{\Gamma(\frac{1}{s}(\frac{n}{2}+N-1))b^{\frac{k}{s}}4^{k}(\frac{n}{2})^{[k]}k!} \frac{{\Phi}_{2r}^{*}(-1,\frac{1}{s}(\frac{n}{2}+N+k-1),\frac{a}{b})}{{\Phi}_{2r}^{*}(-1,\frac{1}{s}(\frac{n}{2}+N-1),\frac{a}{b})} (\|\textbf{u}_{n}\|)^{2k}, \end{array} $$

wher

$$\gamma_{k}(N,n,b,s)=\frac{\Gamma(\frac{n}{2})}{\pi^{\frac{1}{2}}b^{\frac{1}{s}(\frac{n}{2}+N-1)}} \frac{\Gamma(k+\frac{1}{2}){\Gamma}(\frac{1}{s}(\frac{n}{2}+N+k-1))}{\Gamma(k+\frac{n}{2}){\Gamma}(\frac{1}{s}(\frac{n}{2}+N-1))}.$$

1.2 A.2. Proof of (7.1)–(7.4)

Proof

When the dimension n > 1, Ωn(∥t2) defined as

$$ {\Omega}_{n}(\|t\|^{2})=\frac{\Gamma(\frac{n}{2})}{\sqrt{\pi}}\sum\limits_{k=0}^{\infty}\frac{(-1)^{k}\|t\|^{2k}}{(2k)!} \frac{\Gamma(\frac{2k+1}{2})}{\Gamma(\frac{n+2k}{2})}, $$

we have the characteristic function as follows.

$$ \begin{array}{@{}rcl@{}} \psi_{\textbf{Y}}(\textbf{t})&=&E(e^{i\textbf{t}^{\textit{T}}\textbf{Y}}) =e^{i\textbf{t}^{\textit{T}}\boldsymbol{\mu}_{\textbf{Y}}}\frac{1}{{\int}_{0}^{\infty}t^{\frac{m}{2}-1}g_{m}(t)dt}\\ &&\times{\int}_{0}^{\infty}{\Omega}_{n}(v\textbf{t}^{\textit{T}}\boldsymbol{{\Sigma}_{\textbf{Y}}}\textbf{t}) {\sum}_{j=0}^{N-1}\frac{(N-1)_{j}}{j!}\frac{\Gamma(\frac{n-m}{2}+j)}{b^{\frac{n-m}{2}+j}}v^{N+\frac{m}{2}-j-2}e^{-av} {\Phi}_{2r}^{*}(-e^{-bv},\frac{n-m}{2}+j,\frac{a}{b})dv\\ &=&e^{it^{\textit{T}}\boldsymbol{\mu}_{\textbf{Y}}}\left[\sum\limits_{k=0}^{\infty}{\sum}_{j=0}^{N-1}\alpha_{k}^{*}{\upbeta}_{j} {\Gamma}(\frac{m}{2}+N-j-1)\right]^{-1}I_{3}, \end{array} $$

where

$$ {\upbeta}_{j}=\frac{(N-1)_{j}}{j!}\frac{\Gamma(\frac{n-m}{2}+j)}{b^{\frac{n-m}{2}+j}{\Gamma}(2r)},~ \alpha_{k}=\frac{\Gamma(2r+k)(-1)^{k}}{k!},~ \alpha_{k}^{*}=\frac{\alpha_{k}}{(k+\frac{a}{b})^{\frac{m}{2}+N-1}}. $$
$$ \begin{array}{@{}rcl@{}} I_{3}&=&{\int}_{0}^{\infty}\frac{\Gamma(\frac{m}{2})}{\pi^{\frac{1}{2}}}{\sum}_{l=0}^{\infty} \frac{(-1)^{l}(\textbf{t}^{\textit{T}} \boldsymbol{{\Sigma}_{\textbf{Y}}}\textbf{t})^{l}v^{l}{\Gamma}(\frac{2l+1}{2})}{(2l)!{\Gamma}(\frac{m+2l}{2})}\\ &&\times\sum\limits_{k=0}^{N-1}\frac{(N-1)_{k}}{k!}\frac{\Gamma(\frac{n-m}{2}+k)}{b^{\frac{n-m}{2}+k}}v^{N+\frac{m}{2}-k-2}e^{-av} {\Phi}_{2r}^{*}(-e^{-bv},\frac{n-m}{2}+k,\frac{a}{b})dv\\ &=&\frac{\Gamma(\frac{m}{2})}{\pi^{\frac{1}{2}}}{\sum}_{l=0}^{\infty}\frac{(-1)^{l}{\Gamma}(\frac{2l+1}{2})}{(2l)!{\Gamma}(\frac{m+2l}{2})} (\textbf{t}^{\textit{T}}\boldsymbol{{\Sigma}_{\textbf{Y}}}\textbf{t})^{l}\sum\limits_{k=0}^{N-1}{\upbeta}_{k}{\int}_{0}^{\infty}v^{N+\frac{m}{2}-k-2+l}e^{-av} {\sum}_{p=0}^{\infty}\frac{\Gamma(2r + p)}{p!}\frac{(-1)^{p}e^{-bpv}}{(p+\frac{a}{b})^{\frac{n-m}{2}+k}}dv\\ &=&{\sum}_{l=0}^{\infty}\sum\limits_{k=0}^{N-1} {\sum}_{p=0}^{\infty} \frac{(-1)^{l}}{(2l)!}\frac{\Gamma(\frac{m}{2}){\Gamma}(\frac{2l+1}{2})}{\Gamma(\frac{1}{2}){\Gamma}(\frac{m+2l}{2})}{\upbeta}_{k}\alpha_{p} \frac{\Gamma(\frac{m}{2}+N-k+l-1)}{b^{N-k+l}(p+\frac{a}{b})^{\frac{n-m}{2}+N+l}}(\textbf{t}^{\textit{T}}\boldsymbol{{\Sigma}_{\textbf{Y}}}\textbf{t})^{l}\\ &=&{\sum}_{l=0}^{\infty}\sum\limits_{k=0}^{N-1} {\sum}_{p=0}^{\infty} \frac{(-1)^{l}}{(2l)!}\alpha_{p}^{*}{\upbeta}_{k}A_{l}{\Gamma}(\frac{m}{2}+N-k+l-1)(\textbf{t}^{\textit{T}}\boldsymbol{{\Sigma}_{\textbf{Y}}}\textbf{t})^{l}, \end{array} $$
$$ \begin{array}{@{}rcl@{}} \psi_{\textbf{Y}}(\textbf{t})\!&=&\!e^{i\textbf{t}^{\textit{T}}\boldsymbol{\mu}_{\textbf{Y}}} \frac{{\sum}_{l=0}^{\infty} \sum\limits_{k=0}^{N-1} {\sum}_{p=0}^{\infty} \frac{(-1)^{l}}{(2l)!}\alpha_{p}^{*}{\upbeta}_{k}A_{l}{\Gamma}(\frac{m}{2}+N - k+l - 1)} {\sum\limits_{k=0}^{\infty}{\sum}_{j=0}^{N-1}\alpha_{k}^{*}{\upbeta}_{j}{\Gamma}(\frac{m}{2}+N-j-1)}(\textbf{t}^{\textit{T}} \boldsymbol{{\Sigma}_{\textbf{Y}}}\textbf{t})^{l},\\ \phi_{(m),y}(\|\boldsymbol{\xi}_{(m)}\|^{2}) \!&=&\!\frac{{\sum}_{l=0}^{\infty}\sum\limits_{k=0}^{N-1} {\sum}_{p=0}^{\infty} \frac{(-1)^{l}}{(2l)!}\alpha_{p}^{*}{\upbeta}_{k}A_{l}{\Gamma}(\frac{m}{2}+N-k+l-1)} {\sum\limits_{k=0}^{\infty}{\sum}_{j=0}^{N-1}\alpha_{k}^{*}{\upbeta}_{j}{\Gamma}(\frac{m}{2}+N-j-1)}\|\boldsymbol{\xi}_{(m)}\|^{2l}, \end{array} $$

where

$$ A_{x}\triangleq A_{x}(N,m,a,b,p,k)=\frac{B(\frac{m}{2},x+\frac{1}{2})}{B(\frac{m}{2}+x,\frac{1}{2})b^{N-k+x}(p+\frac{a}{b})^{x-\frac{m}{2}+1}}, $$
$$ {\upbeta}_{x}\triangleq{\upbeta}_{x}(N,n,m,b,r)=\frac{(N-1)_{x}}{x!}\frac{\Gamma(\frac{n-m}{2}+x)}{b^{\frac{n-m}{2}+x}{\Gamma}(2r)}, $$
$$ \alpha_{x}(r)\triangleq\alpha_{x}(r)=\frac{\Gamma(2r+x)(-1)^{x}}{x!},~\alpha_{x}^{*}\triangleq\alpha_{x}^{*}(N,n,a,b,r)= \frac{\alpha_{x}}{(x+\frac{a}{b})^{\frac{n}{2}+N-1}}. $$

When the dimension n > 1, Ωn(∥t2) defined as

$$ {\Omega}_{n}(\|t\|^{2})=_{0}F_{1}(\frac{n}{2};-\frac{1}{4}\|t\|^{2}), $$

we have the characteristic function as follows.

$$ \begin{array}{@{}rcl@{}} \psi_{\textbf{Y}}(\textbf{t})\!&=&e^{i\textbf{t}^{\textit{T}}\boldsymbol{\mu}_{\textbf{Y}}}\frac{1}{{\int}_{0}^{\infty}t^{\frac{m}{2}-1}g_{m}(t)dt} {\int}_{0}^{\infty}{\Omega}_{n}(v\textbf{t}^{\textit{T}}\boldsymbol{{\Sigma}_{\textbf{Y}}}\textbf{t})\\ &&\times{\sum}_{j=0}^{N-1}\frac{(N-1)_{j}}{j!}\frac{\Gamma(\frac{n-m}{2}+j)}{b^{\frac{n-m}{2}+j}}v^{N+\frac{m}{2}-j-2}e^{-av} {\Phi}_{2r}^{*}(-e^{-bv},\frac{n-m}{2}+j,\frac{a}{b})dv\\ &=&e^{i\textbf{t}^{\textit{T}}\boldsymbol{\mu}_{\textbf{Y}}}\left[\sum\limits_{k=0}^{\infty}{\sum}_{j=0}^{N-1}\alpha_{k}^{*}{\upbeta}_{j} {\Gamma}(\frac{m}{2}+N-j-1)\right]^{-1}{\int}_{0}^{\infty}\frac{\Gamma(\frac{m}{2})}{\pi^{\frac{1}{2}}} {\sum}_{l=0}^{\infty}\frac{(\textbf{t}^{\textit{T}}\boldsymbol{\Sigma}_{\textbf{Y}}\textbf{t})^{l}}{4^{l}(\frac{m}{2})^{[l]}}\\ &&\times{\sum}_{j=0}^{N-1}\frac{(N-1)_{j}}{j!}\frac{\Gamma(\frac{n-m}{2}+j)}{b^{\frac{n-m}{2}+j}}v^{N+\frac{m}{2}-j-2}e^{-av} {\Phi}_{2r}^{*}(-e^{-bv},\frac{n-m}{2}+j,\frac{a}{b})dv\\ &=&\!e^{i\textbf{t}^{\textit{T}}\boldsymbol{\mu}_{\textbf{Y}}}\frac{{\sum}_{l=0}^{\infty}{\sum}_{j=0}^{N - 1}\frac{\Gamma(\frac{m}{2})}{\pi^{\frac{1}{2}}} \frac{(\textbf{t}^{\textit{T}}\boldsymbol{\Sigma}_{\textbf{Y}}\textbf{t})^{l}}{4^{l}(\frac{m}{2})^{[l]}} \sum\limits_{k=0}^{\infty}{\upbeta}_{j}\alpha_{k}\frac{\Gamma(N+\frac{m}{2}-j - 1)}{b^{N+\frac{m}{2}-j-1}} {\Phi}_{2r}^{*}(-e^{-bv},\frac{n-m}{2} + j,\frac{a}{b})}{\sum\limits_{k=0}^{\infty}{\sum}_{j=0}^{N-1}\alpha_{k}^{*}{\upbeta}_{j} {\Gamma}(\frac{m}{2}+N-j-1)}\\ &=&e^{i\textbf{t}^{\textit{T}}\boldsymbol{\mu}_{\textbf{Y}}}\frac{{\sum}_{l=0}^{\infty}{\sum}_{j=0}^{N-1}\sum\limits_{k=0}^{\infty}\alpha_{k}{\upbeta}_{j}^{*} {\Phi}_{2r}^{*}(-e^{-bv},\frac{n-m}{2}+j,\frac{a}{b})}{\sum\limits_{k=0}^{\infty}{\sum}_{j=0}^{N-1}\alpha_{k}^{*}{\upbeta}_{j}{\Gamma}(\frac{m}{2}+N-j-1)} \frac{\Gamma(\frac{m}{2})}{\pi^{\frac{1}{2}}4^{l}(\frac{m}{2})^{[l]}}(\textbf{t}^{\textit{T}}\boldsymbol{\Sigma}_{\textbf{Y}}\textbf{t})^{l}, \end{array} $$
$$ \phi_{(m),y}(\|\boldsymbol{\xi}_{(m)}\|^{2}) = \frac{{\sum}_{l=0}^{\infty}{\sum}_{j=0}^{N-1}\sum\limits_{k=0}^{\infty}\alpha_{k}{\upbeta}_{j}^{*} {\Phi}_{2r}^{*}(-e^{-bv},\frac{n-m}{2} + j,\frac{a}{b})}{\sum\limits_{k=0}^{\infty}{\sum}_{j=0}^{N-1}\alpha_{k}^{*}{\upbeta}_{j}{\Gamma}(\frac{m}{2}+N-j-1)} \frac{\Gamma(\frac{m}{2})}{\pi^{\frac{1}{2}}4^{l}(\frac{m}{2})^{[l]}}\|\boldsymbol{\xi}_{(m)}\|^{2l}, $$

where

$$ {\upbeta}_{x}\triangleq{\upbeta}_{x}(N,n,m,r) = \frac{(N - 1)_{x}}{x!}\frac{\Gamma(\frac{n-m}{2}+x)}{\Gamma(2r)b^{\frac{n-m}{2}+x}},~ {\upbeta}_{x}^{*}\triangleq{\upbeta}_{x}^{*}(N,n,m,b,r) = \frac{{\upbeta}_{x}{\Gamma}(N+\frac{m}{2}-x-1)}{b^{N+\frac{m}{2}-x-1}}, $$
$$ \alpha_{x}\triangleq\alpha_{x}(r)=\frac{(-1)^{x}{\Gamma}(2r+x)}{x!},~ \alpha_{x}^{*}\triangleq\alpha_{x}^{*}(N,m,a,b,r)=\frac{\alpha_{x}}{(x+\frac{a}{b})^{\frac{n}{2}+N-1}}. $$

Here \({\Phi }_{2r}^{*}\) is the generalized Hurwitz-Lerch zeta function. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yin, C. A New Class of Multivariate Elliptically Contoured Distributions with Inconsistency Property. Methodol Comput Appl Probab 23, 1377–1407 (2021). https://doi.org/10.1007/s11009-020-09817-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-020-09817-7

Keywords

Mathematics Subject Classification (2010)

Navigation