Skip to main content
Log in

The splitting theorem for globally hyperbolic Lorentzian length spaces with non-negative timelike curvature

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this work, we prove a synthetic splitting theorem for globally hyperbolic Lorentzian length spaces with global non-negative timelike curvature containing a complete timelike line. Inspired by the proof for smooth spacetimes (Beem et al. in Global differential geometry and global analysis 1984, Springer, pp. 1–13, 1985), we construct complete, timelike asymptotes which, via triangle comparison, can be shown to fit together to give timelike lines. To get a control on their behaviour, we introduce the notion of parallelity of timelike lines in the spirit of the splitting theorem for Alexandrov spaces as proven in Burago et al. (A course in metric geometry, vol 33, American Mathematical Society, Providence, 2001) and show that asymptotic lines are all parallel. This helps to establish a splitting of a neighbourhood of the given line. We then show that this neighbourhood has the timelike completeness property and is hence inextendible by a result in Grant et al. (Ann Glob Anal Geom 55(1):133–147, 2019), which globalises the local result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

No data was collected nor produced in this work.

Notes

  1. Refer to chapter 14 in [9] for a detailed account.

  2. Geodesics defined on intervals [ab] with \(a = -\infty \) or \(b=\infty \) should be thought of as properly reparametrised.

  3. A set \(V \subset X\) is called causally convex if for all \(p,q \in V\) we have \(J(p,q) \subset V\).

  4. If \(p\ll y_1\ll y_2\ll y_3\), we use Lemma 2.43 and if \(y_1\ll p\ll y_2\ll y_3\) we use Lemma 2.42.

  5. Approximating and globally causally closed Lorentzian pre-length spaces satisfy this, cf. [19, Def. 2.17].

  6. This agrees with the usual notion of synchronising clocks in the sense that this is the parametrisation coming from synchronising the clocks on the particles \(\alpha \) and \(\beta \) and parametrising \(\alpha \) and \(\beta \) by their clock values.

  7. So \(c_n\) converges to the point \([\partial _t]\) on the limit sphere.

References

  1. Ake Hau, L., Burgos, S., Solis, D.A.: Causal completions as Lorentzian pre-length spaces. Gen. Relativ. Gravit. 54(9), 1–20 (2022)

    MathSciNet  MATH  Google Scholar 

  2. Ake Hau, L., Cabrera Pacheco, A.J., Solis, D.A.: On the causal hierarchy of Lorentzian length spaces. Class. Quantum Gravity 37(21), 215013 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Alexander, S., Bishop, R.: A cone splitting theorem for Alexandrov spaces. Pac. J. Math. 218, 1–15 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alexander, S.B., Bishop, R.L.: Lorentz and semi-Riemannian spaces with Alexandrov curvature bounds. Commun. Anal. Geom. 16(2), 251–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alexander, S. B., Graf, M., Kunzinger, M., Sämann, C.: Generalized cones as Lorentzian length spaces: Causality, curvature, and singularity theorems. arXiv:1909.09575 (2019)

  6. Ambrosio, L., Gigli, N., Savare, G.: Gradient flows in metric spaces and in the space of probability measures. Birkhauser (2008)

  7. Barrera, W., Montes de Oca, L., Solis, D. A.: Comparison theorems for Lorentzian length spaces with lower timelike curvature bounds. arXiv:2204.09612 (2022)

  8. Bartnik, R.: Remarks on cosmological spacetimes and constant mean curvature surfaces. Commun. Math. Phys. 117(4), 615–624 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Beem, J., Ehrlich, P., Easley, K.: Global Lorentzian Geometry. Marcel Dekker (1996)

  10. Beem, J., Ehrlich, P., Markvorsen, S., Galloway, G.: Decomposition theorems for Lorentzian manifolds with nonpositive curvature. J. Differ. Geom. 22, 29–42 (1985)

    MathSciNet  MATH  Google Scholar 

  11. Beem, J., Ehrlich, P., Markvorsen, S., Galloway, G.: A Toponogov splitting theorem for Lorentzian manifolds. In: Global Differential Geometry and Global Analysis 1984, pp. 1–13. Springer (1985)

  12. Beran, T., Rott, F.: Gluing constructions for Lorentzian length spaces. arXiv:2201.09695 (2022)

  13. Beran, T., Sämann, C.: Hyperbolic angles in Lorentzian length spaces and timelike curvature bounds. J. Lond. Math. Soc. 2, 1–58 (2023)

    Google Scholar 

  14. Borzellino, J., Zhu, S.: The splitting theorem for orbifolds. Ill. J. Math. 38, 679–691 (1994)

    MathSciNet  MATH  Google Scholar 

  15. Braun, M.: Rényi’s entropy on Lorentzian spaces. Timelike curvature-dimension conditions. arXiv:2206.13005 (2022)

  16. Braun, M., Calisti, M.: Timelike Ricci bounds for low regularity spacetimes by optimal transport. arXiv:2209.03802 (2022)

  17. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry, vol. 33. American Mathematical Society, Providence, RI (2001)

  18. Burago, Y., Gromov, M., Perelman, G.: AD Alexandrov spaces with curvatures bounded below I. Russian Math. Surv. 47, 1–58 (1992)

    Article  Google Scholar 

  19. Burtscher, A., García-Heveling, L.: Time functions on Lorentzian length spaces. arXiv:2108.02693 (2021)

  20. Cai, M.: Ends of Riemannian manifolds with nonnegative Ricci curvature outside of a compact set. Bull. Am. Math. Soc. 24, 371–377 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cai, M.: A splitting theorem for manifolds of almost nonnegative Ricci curvature. Ann. Glob. Anal. Geom. 11, 373–385 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cai, M., Galloway, G., Liu, Z.: Local splitting theorems for Riemannian manifolds. Proc. Am. Math. Soc. 120, 1231–1239 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cavalletti, F., Mondino, A.: Optimal transport in Lorentzian synthetic spaces, synthetic timelike Ricci curvature lower bounds and applications. arXiv:2004.08934 (2020)

  24. Cheeger, J., Gromoll, D.: The splitting theorem for manifolds of nonnegative Ricci curvature. J. Differ. Geom. 6(1), 119–128 (1971)

    MathSciNet  MATH  Google Scholar 

  25. Cheeger, J., Gromoll, D.: On the structure of complete manifolds of nonnegative curvature. Ann. Math. 96, 413–443 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chruściel, P.T., Grant, J.D.E.: On Lorentzian causality with continuous metrics. Class. Quantum Gravity 29(14), 145001 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Cohn-Vossen, S.: Totalkrümmung und geodätische Linien auf einfach zusammenhängenden, offenen, vollstandingen Flächenstucken. Math. Sb. 43, 139–163 (1936)

    MATH  Google Scholar 

  28. Eschenburg, J.-H.: The splitting theorem for space–times with strong energy condition. J. Differ. Geom. 27(3), 477–491 (1988)

    MathSciNet  MATH  Google Scholar 

  29. Fang, F., Li, X., Zhang, Z.: Two generalizations of Cheeger–Gromoll splitting theorem via Bakry–Emery Ricci curvature. Ann. Inst. Fourier 59, 563–573 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Galloway, G.: Splitting theorems for spatially closed space–times. Commun. Math. Phys. 96(4), 423–429 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Galloway, G.: A generalization of the Cheeger–Gromoll splitting theorem. Arch. Math. 47, 372–375 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Galloway, G.: The Lorentzian splitting theorem without the completeness assumption. J. Differ. Geom. 29, 373–387 (1989)

    MathSciNet  MATH  Google Scholar 

  33. Galloway, G.: Existence of CMC Cauchy surfaces and spacetime splitting. Pure Appl. Math. Q. 15, 667–682 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Galloway, G., Horta, A.: Regularity of Lorentzian Busemann functions. Trans. Am. Math. Soc. 348(5), 2063–2084 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Galloway, G., Ling, E., Sbierski, J.: Timelike completeness as an obstruction to \(C^0\)-extensions. Commun. Math. Phys. 359(3), 937–949 (2018)

    Article  ADS  MATH  Google Scholar 

  36. García-Heveling, L.: Causality theory of spacetimes with continuous Lorentzian metrics revisited. Class. Quantum Gravity 38(14), 145028 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Gigli, N.: The splitting theorem in non-smooth context. arXiv:1302.5555 (2013)

  38. Gigli, N.: An overview of the proof of the splitting theorem in spaces with non-negative Ricci curvature. Anal. Geom. Metric Spaces 2(1) (2014)

  39. Gigli, N., Pasqualetto, E.: Lectures on Non-smooth Differential geometry. Springer (2018)

  40. Grant, J.D.E., Kunzinger, M., Sämann, C.: Inextendibility of spacetimes and Lorentzian length spaces. Ann. Glob. Anal. Geom. 55(1), 133–147 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Gromov, M.: Synthetic geometry in Riemannian manifolds. Proc. Int. Congress Math. 1, 415–419 (1978)

    Google Scholar 

  42. Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Birkhauser (1999)

  43. Harris, S.: A triangle comparison theorem for Lorentz manifolds. Indiana Univ. Math. J. 31(3), 289–308 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hawking, S.W., King, A.R., McCarthy, P.J.: A new topology for curved space-time which incorporates the causal, differential, and conformal structures. J. Math. Phys. 17(2), 174–181 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Hedicke, J.: Lorentzian distance functions in contact geometry. J. Topol. Anal. 1–21 (2022)

  46. Innami, N.: Splitting theorems of Riemannian manifolds. Comput. Math. 47, 237–247 (1982)

    MathSciNet  MATH  Google Scholar 

  47. Kunzinger, M., Oberguggenberger, M., Vickers, J. A.: Synthetic versus distributional lower Ricci curvature bounds. arXiv:2207.03715 (2022)

  48. Kunzinger, M., Sämann, C.: Lorentzian length spaces. Ann. Glob. Anal. Geom. 54(3), 399–447 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Kunzinger, M., Steinbauer, R.: Null distance and convergence of Lorentzian length spaces. Ann. Henri Poincare 1424 (2022)

  50. Ling, E.: Aspects of \(C^{0}\) causal theory. Gen. Relativ. Gravit. 52(57) (2020)

  51. Mashiko, Y.: A splitting theorem for Alexandrov spaces. Pac. J. Math. 204, 445–458 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  52. McCann, R. J.: Private communication (2023)

  53. Milka, A.D.: Metric structure of a certain class of spaces that contain straight lines. Ukrain. Geometr. Sb. Vyp. 4, 43–48 (1967)

    MathSciNet  Google Scholar 

  54. Minguzzi, E.: Causality theory for closed cone structures with applications. Rev. Math. Phys. 31(05), 1930001 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  55. Newman, R. P.: A proof of the splitting conjecture of S.-T. Yau. J. Differ. Geom. 31(1):163–184 (1990)

  56. Noronha, M.: A splitting theorem for complete manifolds with non-negative curvature operator. Proc. Am. Math. Soc. 105, 979–985 (1989)

    Article  MATH  Google Scholar 

  57. Paeng, S.-H.: Manifolds with non-negative Ricci curvature almost everywhere. J. Korean Math. Soc. 36(1), 125–137 (1999)

    MathSciNet  MATH  Google Scholar 

  58. Rott, F.: Gluing of Lorentzian length spaces and the causal ladder. arXiv:2209.06894 (2022)

  59. Steinbauer, R.: The singularity theorems of General Relativity and their low regularity extensions. arXiv:2206.05939 (2022)

  60. Sturm, K.T.: On the geometry of measure metric spaces. Acta Math. 196, 65–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  61. Toponogov, V.: Riemannian spaces with straight lines. AMS Transl. 37, 287–290 (1964)

    MATH  Google Scholar 

  62. Toponogov, V.: The metric structure of Riemannian spaces with non-negative curvature which contain straight lines. Am. Math. Soc. Transl. 70, 225–239 (1968)

    MathSciNet  MATH  Google Scholar 

  63. Villani, C.: Optimal Transport, Old and New. Springer (2009)

  64. Wang, L.: A splitting theorem for the weighted measure. Ann. Glob. Anal. Geom. 42, 79–89 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  65. Yau, S.T.: Problem section. In: Annals of Mathematics Studies. Princeton University Press (1982)

Download references

Acknowledgements

Argam Ohanyan and Felix Rott were supported by project P 33594 of the Austrian Science Fund FWF. Argam Ohanyan was also supported by the ÖAW-DOC scholarship of the Austrian Academy of Sciences. Didier Solis acknowledges the support of Conacyt under grant SNI 38368 and UADY under program FMAT-PTA2022, as well as the hospitality of the University of Vienna, where parts of this work were conducted. Tobias Beran acknowledges the support of University of Vienna. The authors would like to thank the Erwin Schrödinger Institute for support and hospitality during the programme Non-regular Spacetime Geometry where part of this work was undertaken. The authors would like to thank Matteo Calisti, Gregory Galloway, Melanie Graf, Michael Kunzinger, Clemens Sämann, Benedict Schinnerl and Roland Steinbauer for helpful discussions and valuable feedback. The authors would like to acknowledge the thorough work of the reviewer, whose suggestions helped improving this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier A. Solis.

Ethics declarations

Conflict of interest/Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beran, T., Ohanyan, A., Rott, F. et al. The splitting theorem for globally hyperbolic Lorentzian length spaces with non-negative timelike curvature. Lett Math Phys 113, 48 (2023). https://doi.org/10.1007/s11005-023-01668-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-023-01668-w

Keywords

Mathematics Subject Classification

Navigation