Skip to main content
Log in

M2-branes and \({\mathfrak {q}}\)-Painlevé equations

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we investigate a novel connection between the effective theory of M2-branes on \(({\mathbb {C}}^2/{\mathbb {Z}}_2\times {\mathbb {C}}^2/{\mathbb {Z}}_2)/{\mathbb {Z}}_k\) and the \({\mathfrak {q}}\)-deformed Painlevé equations, by proposing that the grand canonical partition function of the corresponding four-nodes circular quiver \({\mathcal {N}}=4\) Chern–Simons matter theory solves the \({\mathfrak {q}}\)-Painlevé VI equation. We analyse how this describes the moduli space of the topological string on local \(\text {dP}_5\) and, via geometric engineering, five dimensional \(N_f=4\) \(\text {SU}(2)\) \({\mathcal {N}}=1\) gauge theory on a circle. The results we find extend the known relation between ABJM theory, \({\mathfrak {q}}\)-Painlevé \(\text {III}_3\), and topological strings on local \({{\mathbb {P}}}^1\times {{\mathbb {P}}}^1\). From the mathematical viewpoint the quiver Chern–Simons theory provides a conjectural Fredholm determinant realisation of the \({\mathfrak {q}}\)-Painlevé VI \(\tau \)-function. We provide evidence for this proposal by analytic and numerical checks and discuss in detail the successive decoupling limits down to \(N_f=0\), corresponding to \({\mathfrak {q}}\)-Painlevé III\(_3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Note that this Fredholm determinant is different from the spectral determinant of the auxiliary linear problem associated with the Painlevé equation. See for example [34].

  2. Here we follow the standard terminology already used in [10] (see section 2.1) distinguishing the complex moduli of the mirror curve into a “true” modulus which we call \(\kappa \) and mass parameters.

  3. We could consider more general choices of FI parameters and also introduce hypermultiplet’s masses. However, such extra deformations either do not preserve the Newton polygon of the quantum curve (2.4) or do not affect the quantum curve at all.

  4. There are a couple of notational differences. First, the sign of the Chern–Simons level between an NS5-brane and a \(\left( 1,k\right) \)5-brane in this paper is opposite to that in [23]. Second, according to [23], we should care of the position of the node whose rank is the lowest. In this paper, \(N_{4}\) is always the smallest.

  5. The procedure in [23] cannot decide the overall phase, the constant term E and the constant shift of \(\widehat{x}\) and \(\widehat{p}\). We fixed the overall phase and the shift by comparing to the exact result (B.41). We will also fix the form of E in (3.12).

  6. While this draft was in preparation, the quantum mirror curve for general values of \((M_1,M_2,M,\zeta _1,\zeta _2)\) also appeared in [26]. Our formula for the quantum mirror curve is their eq. (A.1) combined with eq. (3.5), where \(m_i^{\left[ \text {FMMN} \right] }\) and \(z_i^{\left[ \text {FMMN} \right] }\) in [26] being related to the rank differences \(M_1,M_2,M\) and the FI parameters \(\zeta _1,\zeta _2\) as

    $$\begin{aligned}&m_1^{\left[ \text {FMMN} \right] }=e^{\pi i(-M_1+M_2)},\quad m_2^{\left[ \text {FMMN} \right] }=e^{\pi i(M-k)},\quad m_3^{\left[ \text {FMMN} \right] }=e^{\pi i(M_1+M_2-M-k)}, \end{aligned}$$
    (3.9)
    $$\begin{aligned}&z_1^{\left[ \text {FMMN} \right] }=e^{-2\pi \zeta _1},\quad z_3^{\left[ \text {FMMN} \right] }=e^{-2\pi \zeta _2}. \end{aligned}$$
    (3.10)

    We thank Prof. Moriyama for pointing it out.

  7. The explicit expressions for \(s_1,s_2,s_3,s_4,s_5\) are written in [23] but in a different basis \(\left( \log \bar{h}_1,\log \bar{h}_2,\log e_1,\log e_3,\log e_5\right) \), which is related to the current basis \(\left( M_1-k,M_2-k,M-k,-i\zeta _1,-i\zeta _2\right) \) as

    $$\begin{aligned} \begin{pmatrix} \log \bar{h}_1\\ \log \bar{h}_2\\ \log e_1\\ \log e_3\\ \log e_5\\ \end{pmatrix}=\pi i\begin{pmatrix} 2&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 2&{}\quad -2&{}\quad 0&{}\quad 0\\ 1&{}\quad 1&{}\quad -2&{}\quad 2&{}\quad 0\\ 1&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad -2\\ 1&{}\quad 1&{}\quad -2&{}\quad -2&{}\quad 0 \end{pmatrix} \begin{pmatrix} M_1-k\\ M_2-k\\ M-k\\ -i\zeta _1\\ -i\zeta _2 \end{pmatrix}. \end{aligned}$$
    (3.26)

    .

  8. Explicitly, \({{\widehat{\rho }}}_k\) in (3.7) and \({{\widehat{\rho }}}_k\) in (4.1) are related by the following similarity transformation:

    $$\begin{aligned} {{\widehat{\rho }}}_k^{4.1} ={\widehat{U}}{{\widehat{\rho }}}_k^{3.7}{\widehat{U}}^{-1}, \end{aligned}$$
    (4.2)

    with

    $$\begin{aligned} {{\widehat{U}}}=e^{\left( \frac{1}{2}-\frac{M_2}{2k}\right) {{\widehat{x}}}} \frac{ \Phi _b\left( \frac{{{\widehat{x}}}}{2\pi b}+\frac{\zeta _2}{b}-\frac{iM_2}{2b}+\frac{ib}{2}\right) }{ \Phi _b\left( \frac{{{\widehat{x}}}}{2\pi b}+\frac{\zeta _2}{b}+\frac{iM_2}{2b}-\frac{ib}{2}\right) }. \end{aligned}$$
    (4.3)

    .

  9. We can also chose \(B_j\left( x\right) \) as any polynomials satisfying

    $$\begin{aligned} B_{j+1}\left( x+1\right) -B_{j+1}\left( x\right) =\left( j+1\right) x^j. \end{aligned}$$
    (4.47)

    .

  10. In terms of the grand partition function, which appears in the right hand side of (3.23), this operation corresponds to rescale \(\kappa \) as \(e^{\pi \zeta _{2}}\kappa \).

  11. Matching the similarity transformation and the shift guarantees the equality between the density matrix and the quantum curve at operator level. We explain this point at the end of this section.

References

  1. Gamayun, O., Iorgov, N., Lisovyy, O.: Conformal field theory of Painlevé VI. JHEP 10, 038 (2012). arXiv:1207.0787 [hep-th]. [Erratum: JHEP 10, 183 (2012)]

  2. Nekrasov, N.A.: Seiberg–Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7(5), 831–864 (2003). arXiv:hep-th/0206161

    MathSciNet  MATH  Google Scholar 

  3. Bonelli, G., Lisovyy, O., Maruyoshi, K., Sciarappa, A., Tanzini, A.: On Painlevé/gauge theory correspondence. Lett. Math. Phys. 107, 2359–2413 (2017). arXiv:1612.06235 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  4. Bershtein, M.A., Shchechkin, A.I.: Bilinear equations on Painlevé \(\tau \) functions from CFT. Commun. Math. Phys. 339(3), 1021–1061 (2015). arXiv:1406.3008 [math-ph]

    ADS  MATH  Google Scholar 

  5. Nekrasov, N.: Blowups in BPS/CFT correspondence, and Painlevé VI, arXiv:2007.03646 [hep-th]

  6. Jeong, S., Nekrasov, N.: Riemann–Hilbert correspondence and blown up surface defects. JHEP 12, 006 (2020). arXiv:2007.03660 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  7. Bonelli, G., Grassi, A., Tanzini, A.: Seiberg–Witten theory as a Fermi gas. Lett. Math. Phys. 107(1), 1–30 (2017). arXiv:1603.01174 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  8. Bershtein, M.A., Shchechkin, A.I.: q-deformed Painlevé \(\tau \) function and q-deformed conformal blocks. J. Phys. A 50(8), 085202 (2017). arXiv:1608.02566 [math-ph]

    ADS  MathSciNet  MATH  Google Scholar 

  9. Bonelli, G., Grassi, A., Tanzini, A.: New results in \({\cal{N} }=2\) theories from non-perturbative string. Annales Henri Poincare 19(3), 743–774 (2018). arXiv:1704.01517 [hep-th]

    MathSciNet  MATH  Google Scholar 

  10. Bonelli, G., Grassi, A., Tanzini, A.: Quantum curves and \(q\)-deformed Painlevé equations. Lett. Math. Phys. 109(9), 1961–2001 (2019). arXiv:1710.11603 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  11. Sakai, H.: Rational surfaces associated with affine root systems and geometry of the Painlevé equations. Commun. Math. Phys. 220(1), 165–229 (2001)

  12. Gu, J., Marino, M.: Peacock patterns and new integer invariants in topological string theory, arXiv:2104.07437 [hep-th]

  13. Bershtein, M., Shchechkin, A.: Folding transformations for q-Painleve equations, arXiv:2110.15320 [nlin.SI]

  14. Bershtein, M., Gavrylenko, P., Marshakov, A.: Cluster integrable systems, \(q\)-Painlevé equations and their quantization. JHEP 02, 077 (2018). arXiv:1711.02063 [math-ph]

    ADS  MATH  Google Scholar 

  15. Bershtein, M., Gavrylenko, P., Marshakov, A.: Cluster Toda chains and Nekrasov functions. Theor. Math. Phys. 198(2), 157–188 (2019). arXiv:1804.10145 [math-ph]

    MATH  Google Scholar 

  16. Bonelli, G., Del Monte, F., Tanzini, A.: BPS quivers of five-dimensional SCFTs, topological strings and q-Painlevé equations. Annales Henri Poincare 22(8), 2721–2773 (2021). arXiv:2007.11596 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  17. Del Monte, F., Longhi, P.: Quiver symmetries and wall-crossing invariance, arXiv:2107.14255 [hep-th]

  18. Hollowood, T.J., Iqbal, A., Vafa, C.: Matrix models, geometric engineering and elliptic genera. JHEP 03, 069 (2008). arXiv:hep-th/0310272

    ADS  MathSciNet  Google Scholar 

  19. Aharony, O., Bergman, O., Jafferis, D.L., Maldacena, J.: N=6 superconformal Chern–Simons-matter theories, M2-branes and their gravity duals. JHEP 10, 091 (2008). arXiv:0806.1218 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  20. Aharony, O., Bergman, O., Jafferis, D.L.: Fractional M2-branes. JHEP 11, 043 (2008). arXiv:0807.4924 [hep-th]

    ADS  MathSciNet  Google Scholar 

  21. Hatsuda, Y., Marino, M., Moriyama, S., Okuyama, K.: Non-perturbative effects and the refined topological string. JHEP 09, 168 (2014). arXiv:1306.1734 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  22. Grassi, A., Hatsuda, Y., Marino, M.: Topological strings from quantum mechanics. Annales Henri Poincare 17(11), 3177–3235 (2016). arXiv:1410.3382 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  23. Kubo, N., Moriyama, S.: Hanany–Witten transition in quantum curves. JHEP 12, 101 (2019). arXiv:1907.04971 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  24. Furukawa, T., Moriyama, S., Nakanishi, T.: Brane transitions from exceptional groups. Nucl. Phys. B 969, 115477 (2021). arXiv:2010.15402 [hep-th]

    MathSciNet  MATH  Google Scholar 

  25. Kubo, N.: 3d dualities with decoupled sectors and brane transitions, arXiv:2112.07776 [hep-th]

  26. Furukawa, T., Matsumura, K., Moriyama, S., Nakanishi, T.: Duality cascades and affine weyl groups, arXiv:2112.13616 [hep-th]

  27. Iorgov, N., Lisovyy, O., Teschner, J.: Isomonodromic tau-functions from Liouville conformal blocks. Commun. Math. Phys. 336(2), 671–694 (2015). arXiv:1401.6104 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  28. Alday, L.F., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional Gauge theories. Lett. Math. Phys. 91, 167–197 (2010). arXiv:0906.3219 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  29. Grammaticos, B., Ramani, A., Papageorgiou, V.: Do integrable mappings have the Painleve property? Phys. Rev. Lett. 67, 1825–1828 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Ramani, A., Grammaticos, B., Hietarinta, J.: Discrete versions of the Painleve equations. Phys. Rev. Lett. 67, 1829–1832 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Jimbo, M., Sakai, and : A q-analog of the sixth Painlevé equation. Lett. Math. Phys. 38, 145–154 (1996), arXiv:chao-dyn/9507010

  32. Kajiwara, K., Noumi, K., Yamada, Y.: Geometric aspects of painlevé equations. J. Phys. A Math. Theor. 50(7), 073001 (2017)

  33. Seiberg, N.: Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics. Phys. Lett. B 388, 753–760 (1996). arXiv:hep-th/9608111

    ADS  MathSciNet  Google Scholar 

  34. Bershtein, M., Gavrylenko, M., Grassi, A.: Quantum spectral problems and isomonodromic deformations, arXiv:2105.00985 [math-ph]

  35. Kapustin, A., Willett, B., Yaakov, I.: Exact results for wilson loops in superconformal Chern–Simons theories with matter. JHEP 03, 089 (2010). arXiv:0909.4559 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  36. Marino, M., Putrov, P.: ABJM theory as a Fermi gas. J. Stat. Mech. 1203, P03001 (2012). arXiv:1110.4066 [hep-th]

    MathSciNet  MATH  Google Scholar 

  37. Awata, H., Hirano, H., Shigemori, M.: The partition function of ABJ theory. PTEP 2013, 053B04 (2013), arXiv:1212.2966 [hep-th]

  38. Honda, M.: Direct derivation of “mirror’’ ABJ partition function. JHEP 12, 046 (2013). arXiv:1310.3126 [hep-th]

    ADS  Google Scholar 

  39. Kashaev, R., Marino, M., Zakany, S.: Matrix models from operators and topological strings, 2. Annales Henri Poincare 17(10), 2741–2781 (2016). arXiv:1505.02243 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  40. Honda, M., Okuyama, K.: Exact results on ABJ theory and the refined topological string. JHEP 08, 148 (2014). arXiv:1405.3653 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  41. Moriyama, S., Nosaka, T.: Partition functions of superconformal Chern–Simons theories from fermi gas approach. JHEP 11, 164 (2014). arXiv:1407.4268 [hep-th]

    ADS  Google Scholar 

  42. Moriyama, S., Nosaka, T.: Exact instanton expansion of superconformal Chern–Simons theories from topological strings. JHEP 05, 022 (2015). arXiv:1412.6243 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  43. Imamura, Y., Kimura, K.: On the moduli space of elliptic Maxwell–Chern–Simons theories. Prog. Theor. Phys. 120, 509–523 (2008). arXiv:0806.3727 [hep-th]

    ADS  MATH  Google Scholar 

  44. Moriyama, S., Nakayama, S., Nosaka, T.: Instanton effects in rank deformed superconformal Chern–Simons theories from topological strings. JHEP 08, 003 (2017). arXiv:1704.04358 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  45. Moriyama, S., Nosaka, T., Yano, K.: Superconformal Chern–Simons theories from del Pezzo geometries. JHEP 11, 089 (2017). arXiv:1707.02420 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  46. Kubo, N., Moriyama, S., Nosaka, T.: Symmetry breaking in quantum curves and super Chern–Simons matrix models. JHEP 01, 210 (2019). arXiv:1811.06048 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  47. Nekrasov, N., Okounkov, A.: Seiberg–Witten theory and random partitions. Prog. Math. 244, 525–596 (2006). arXiv:hep-th/0306238

    MathSciNet  MATH  Google Scholar 

  48. Jimbo, M., Nagoya, M., Sakai, H.: CFT approach to the q-Painlevé VI equation. J. Integrab. Syst. 2(1), (2017); arXiv:1706.01940 [math-ph]

  49. Awata, H., Yamada, Y.: Five-dimensional AGT conjecture and the deformed Virasoro algebra. JHEP 01, 125 (2010). arXiv:0910.4431 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  50. Awata, H., Feigin, B., Shiraishi, J.: Quantum algebraic approach to refined topological vertex. JHEP 03, 041 (2012). arXiv:1112.6074 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  51. Bao, L., Pomoni, E., Taki, M., Yagi, F.: M5-branes, toric diagrams and gauge theory duality. JHEP 04, 105 (2012). arXiv:1112.5228 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  52. Katz, S.H., Klemm, A., Vafa, C.: Geometric engineering of quantum field theories. Nucl. Phys. B 497, 173–195 (1997). arXiv:hep-th/9609239

    ADS  MathSciNet  MATH  Google Scholar 

  53. Batyrev, V.V.: Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties, arXiv e-prints (1993), arXiv:math.AG/9310003

  54. Chiang, T.M., Klemm, A., Yau, S.-T., Zaslow, E.: Local mirror symmetry: calculations and interpretations. Adv. Theor. Math. Phys. 3, 495–565 (1999). arXiv:hep-th/9903053

    MathSciNet  MATH  Google Scholar 

  55. Hori, K., Vafa, K.: Mirror symmetry, arXiv:hep-th/0002222

  56. Marino, M., Zakany, S.: Matrix models from operators and topological strings. Annales Henri Poincare 17(5), 1075–1108 (2016). arXiv:1502.02958 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  57. Hatsuda, Y., Moriyama, S., Okuyama, K.: Instanton effects in ABJM theory from fermi gas approach. JHEP 01, 158 (2013). arXiv:1211.1251 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  58. Codesido, S., Grassi, A., Marino, M.: Spectral theory and mirror curves of higher genus. Annales Henri Poincare 18(2), 559–622 (2017). arXiv:1507.02096 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  59. Codesido, S., Gu, J., Marino, M.: Operators and higher genus mirror curves. JHEP 02, 092 (2017). arXiv:1609.00708 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  60. Aharony, O., Hanany, A., Kol, B.: Webs of (p, q) five-branes, five-dimensional field theories and grid diagrams. JHEP 01, 002 (1998). arXiv:hep-th/9710116

    ADS  Google Scholar 

  61. Putrov, P., Yamazaki, M.: Exact ABJM partition function from TBA. Mod. Phys. Lett. A 27, 1250200 (2012). arXiv:1207.5066 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  62. Matsuhira, Y., Nagoya, H.: Combinatorial expressions for the tau functions of \(q\)-Painleve V and III equations. SIGMA 15, 074 (2019). arXiv:1811.03285 [math-ph]

    MathSciNet  MATH  Google Scholar 

  63. Tsuda, T., Masuda, T.: q-Painlevé VI equation arising from q-UC hierarchy. Commun. Math. Phys. 262(3), 595–609 (2006)

  64. Furukawa, T., Moriyama, S., Sugimoto, Y.: Quantum mirror map for Del Pezzo geometries. J. Phys. A 53(38), 38 (2020). arXiv:1908.11396 [hep-th]

    MathSciNet  Google Scholar 

  65. Nekrasov, N.A., Shatashvili, S.L.: Quantization of integrable systems and four dimensional gauge theories. In: 16th International Congress on Mathematical Physics, vol. 8, pp. 265–289 (2009). arXiv:0908.4052 [hep-th]

  66. Bonelli, G., Globlek, F., Tanzini, A.: Counting Yang–Mills instantons by surface operator renormalization group flow. Phys. Rev. Lett. 126(23), 231602 (2021). arXiv:2102.01627 [hep-th]

    ADS  MathSciNet  Google Scholar 

  67. Nakajima, H., Yoshioka, K.: Instanton counting on blowup. II. K-theoretic partition function, arXiv:math/0505553

  68. Bershtein, M., Shchechkin, A.: Painlevé equations from Nakajima–Yoshioka blowup relations. Lett. Math. Phys. 109(11), 2359–2402 (2019). arXiv:1811.04050 [math-ph]

    ADS  MathSciNet  MATH  Google Scholar 

  69. Hosomichi, K., Lee, K.-M., Lee, S., Lee, S., Park, J.: N = 5,6 Superconformal Chern–Simons theories and M2-branes on orbifolds. JHEP 09, 002 (2008). arXiv:0806.4977 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  70. Gomis, J., Rodriguez-Gomez, D., Van Raamsdonk, M., Verlinde, H.: A massive study of M2-brane proposals. JHEP 09, 113 (2008). arXiv:0807.1074 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  71. Nosaka, T.: SU(N) q-Toda equations from mass deformed ABJM theory, arXiv:2012.07211 [hep-th]

  72. Nosaka, T., Shimizu, K., Terashima, S.: Large N behavior of mass deformed ABJM theory. JHEP 03, 063 (2016). arXiv:1512.00249 [hep-th]

    ADS  MATH  Google Scholar 

  73. Nosaka, T., Shimizu, K., Terashima, S.: Mass deformed ABJM theory on three sphere in large N limit. JHEP 03, 121 (2017). arXiv:1608.02654 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  74. Honda, M., Nosaka, T., Shimizu, K., Terashima, S.: Supersymmetry breaking in a large \(N\) gauge theory with gravity dual. JHEP 03, 159 (2019). arXiv:1807.08874 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  75. Nosaka, T.: Instanton effects in ABJM theory with general R-charge assignments. JHEP 03, 059 (2016). arXiv:1512.02862 [hep-th]

    ADS  MATH  Google Scholar 

  76. Nosaka, T., Poggi, M., Sarkis, M.: Work in progress

  77. Bourdier, J., Drukker, N., Felix, J.: The \({\cal{N} }=2\) Schur index from free fermions. JHEP 01, 167 (2016). arXiv:1510.07041 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  78. Drukker, N.: The \( {\cal{N} }=4 \) Schur index with Polyakov loops. JHEP 12, 012 (2015). arXiv:1510.02480 [hep-th]

    ADS  MathSciNet  Google Scholar 

  79. Bourdier, J., Drukker, N., Felix, J.: The exact Schur index of \({\cal{N} }=4\) SYM. JHEP 11, 210 (2015). arXiv:1507.08659 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  80. Nishizawa, M.: On a q-analogue of the multiple gamma functions. Lett. Math. Phys. 37(2), 201-209 (1996)

  81. Matsumoto, S., Moriyama, S.: ABJ fractional brane from ABJM Wilson loop. JHEP 03, 079 (2014). arXiv:1310.8051 [hep-th]

    ADS  Google Scholar 

  82. Zakany, S.: Matrix models for topological strings: exact results in the planar limit, arXiv:1810.08608 [hep-th]

Download references

Acknowledgements

We would like to thank Fabrizio Del Monte, Alba Grassi, Hirotaka Hayashi, Andrew P. Kels, Marcos Mariño, Sanefumi Moriyama, Takahiro Nishinaka and Yasuhiko Yamada for valuable discussions and useful comments. Part of the results was computed by using the high performance computing facilities provided by SISSA (Ulysses) and by Yukawa Institute for Theoretical Physics (Sushiki server). The work of NK is supported by Grant-in-Aid for JSPS Fellows No.20J12263. This research is partially supported by the INFN Research Projects GAST and ST &FI, by PRIN “Geometria delle varietà algebriche” and by PRIN “Non-perturbative Aspects Of Gauge Theories And Strings” and by GNFM of INdAM. Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naotaka Kubo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Quantum dilogarithm and other special functions

In the following we assume \(|{\mathfrak {q}}|\ne 1\). We recall the definition of \({\mathfrak {q}}-\)numbers,

$$\begin{aligned}{}[u]=\frac{1-{\mathfrak {q}}^{u}}{1-{\mathfrak {q}}}, \end{aligned}$$
(A.1)

and the infinite multiple \({\mathfrak {q}}\)-Pochhammer symbol

$$\begin{aligned}{} & {} (z;{\mathfrak {q}}_1,\dots ,{\mathfrak {q}}_k)_{\infty }\nonumber \\{} & {} \quad =\exp {\left( -\sum \limits _{p=1}^\infty \frac{z^p}{p}\frac{1}{1-{\mathfrak {q}}_1^p}\cdots \frac{1}{1-{\mathfrak {q}}_k^p} \right) } {\mathop {=}\limits ^{|{\mathfrak {q}}|<1}}\prod _{l_1,\dots ,l_k=0}^{\infty }\left( 1-z {\mathfrak {q}}_1^{l_1}\cdots {\mathfrak {q}}_k^{l_k}\right) .\qquad \quad \end{aligned}$$
(A.2)

This is defined for \(|z|<1\), but can be analytically continued to \(z\in {\mathbb {C}}\) using the latter equality. We extend the definition to an empty symbol \((z;)_\infty :=1-z\). For any \(k\ge 1\) we then have the relations

$$\begin{aligned} \frac{( z;{\mathfrak {q}}_1,\dots ,{\mathfrak {q}}_k)_{\infty }}{({\mathfrak {q}}_1 z;{\mathfrak {q}}_1,\dots ,{\mathfrak {q}}_k)_{\infty }}= ( z;{\mathfrak {q}}_2,\dots ,{\mathfrak {q}}_k)_{\infty }. \end{aligned}$$
(A.3)

Let us introduce the \({\mathfrak {q}}\)-Gamma and \({\mathfrak {q}}\)-Barnes G functions

$$\begin{aligned} \Gamma _{{\mathfrak {q}}}(u)=\frac{({\mathfrak {q}};{\mathfrak {q}})_\infty }{({\mathfrak {q}}^u;{\mathfrak {q}})_\infty }(1-{\mathfrak {q}})^{u-1},\quad G_{{\mathfrak {q}}}(u)=\frac{({\mathfrak {q}}^u;{\mathfrak {q}},{\mathfrak {q}})_\infty }{({\mathfrak {q}};{\mathfrak {q}},{\mathfrak {q}})_\infty }({\mathfrak {q}};{\mathfrak {q}})_\infty ^{u-1}(1-{\mathfrak {q}})^{-\frac{(u-1)(u-2)}{2}},\nonumber \\ \end{aligned}$$
(A.4)

where \(|{\mathfrak {q}}|<1\), which satisfy the \({\mathfrak {q}}\)-analogues of the usual properties of Gamma and Barnes G functions,

$$\begin{aligned} \Gamma _{{\mathfrak {q}}}(u+1)=[u]\Gamma _{{\mathfrak {q}}}(u),\quad G_{{\mathfrak {q}}}(u+1)=\Gamma _{{\mathfrak {q}}}(u) G_{{\mathfrak {q}}}(u) \end{aligned}$$
(A.5)

and are both equal to one at \(u=1\) and log-convex [80]. These can also be easily analytically continued to \(|{\mathfrak {q}}|>1\) using

$$\begin{aligned} \Gamma _{{\mathfrak {q}}}(u)={\mathfrak {q}}^{\frac{(u-1)(u-2)}{2}}\Gamma _{{\mathfrak {q}}^{-1}}(u), \quad G_{{\mathfrak {q}}}(u) = {\mathfrak {q}}^{\frac{(u-1)(u-2)(u-3)}{6}}G_{{\mathfrak {q}}^{-1}}(u). \end{aligned}$$
(A.6)

Let us finally introduce the quantum dilogarithm function \(\Phi _b\left( z\right) \) as [39]

$$\begin{aligned} \Phi _b\left( z\right) =\frac{ \left( e^{2\pi b\left( z+\frac{i}{2}\left( b+\frac{1}{b}\right) \right) };e^{2\pi ib^2}\right) _\infty }{ \left( e^{\frac{2\pi }{b}\left( z-\frac{i}{2}\left( b+\frac{1}{b}\right) \right) };e^{-\frac{2\pi i}{b^2}}\right) _\infty }. \end{aligned}$$
(A.7)

Note that \(\Phi _b\left( z\right) \) satisfies the following recursive relations

$$\begin{aligned} \frac{\Phi _b\left( z+ib\right) }{\Phi _b\left( z\right) }=\frac{1}{1+e^{\pi ib^2}e^{2\pi bz}},\quad \frac{\Phi _b\left( z+\frac{i}{b}\right) }{\Phi _b\left( z\right) }=\frac{1}{1+e^{\frac{\pi i}{b^2}}e^{\frac{2\pi z}{b}}}, \end{aligned}$$
(A.8)

and that its asymptotic behavior is

$$\begin{aligned} \Phi _{b}\left( z\right) \sim {\left\{ \begin{array}{ll} \exp \left( i\pi z^{2}+\frac{\pi i}{12}\left( b^{2}+b^{-2}\right) \right) &{} \left( \textrm{Re}\left[ z\right] \rightarrow \infty \right) \\ 1 &{} \left( \textrm{Re}\left[ z\right] \rightarrow -\infty \right) \end{array}\right. }. \end{aligned}$$
(A.9)

B Fermi gas formalism

In this appendix, we address the study of the matrix model (3.4) in the Fermi gas formalism. First of all, we introduce our notations for one-dimensional quantum mechanics. We denote the canonical position operators as \({{\widehat{x}}}\) and define the canonical momentum operator \({{\widehat{p}}}\) normalized as \([{{\widehat{x}}},{{\widehat{p}}}]=i\hbar \) with \(\hbar =2\pi k\). We denote a position eigenstate as \(|x\rangle \) and a momentum eigenstate as \(|p\rangle \!\rangle \), which are normalized as

$$\begin{aligned}&{{\widehat{x}}}|x\rangle =x|x\rangle ,\quad \langle x|y\rangle =2\pi \delta \left( x-y\right) , \end{aligned}$$
(B.1)
$$\begin{aligned}&{{\widehat{p}}}|p\rangle \!\rangle =p|p\rangle \!\rangle ,\quad \langle \!\langle p|p'\rangle \!\rangle =2\pi \delta \left( p-p'\right) ,\quad \langle x|p\rangle \!\rangle =\frac{1}{\sqrt{k}}e^{\frac{ixp}{2\pi k}}. \end{aligned}$$
(B.2)

For later purposes, we also introduce a symbol \(t_{\zeta ,n,r}\) defined as

$$\begin{aligned} t_{\zeta ,n,r}=2\pi \zeta +2\pi i\left( \frac{n+1}{2}-r\right) . \end{aligned}$$
(B.3)

Our goal is to derive the expressions for the matrix model (3.5) and \({{\widehat{\rho }}}_k^{-1}\) (3.11). Our derivation extends the one in [23] to the present case with rank deformations and generic Fayet-Iliopoulos parameters. In the following we assume that the FI parameters \(\zeta _{i}\) are real, we use the parametrization

$$\begin{aligned} N_{1}=N+M_{1},\quad N_{2}=N+M,\quad N_{3}=N+M_{2},\quad N_{4}=N, \end{aligned}$$
(B.4)

and assume that N, \(M_{1}\), \(M_{2}\) and M are non-negative integers as in the main text. We also assume \(M_{1}\ge M\) and \(M_{2}\ge M\).

The integrand of the matrix model, after shifting all of the integration variables as \(\mu \rightarrow \frac{\mu }{k}\), can be divided into two parts as

$$\begin{aligned}{} & {} Z_k\left( N;M_1,M_2,M,\zeta _1,\zeta _2\right) \nonumber \\{} & {} \quad =\frac{1}{N_{2}!N_{4}!}\int _{-\infty }^\infty \prod _{n=1}^{N_{4}}\frac{\textrm{d}\mu _{n}}{2\pi k}\prod _{n=1}^{N_{2}}\frac{\textrm{d}\nu _{n}}{2\pi k}Y_{N_{4},N_{1},N_{2}}\left( 0,\zeta _{1};\mu ,\nu \right) \nonumber \\{} & {} \qquad \left( Y_{N_{4},N_{3},N_{2}}\left( \zeta _{2},0;\mu ,\nu \right) \right) ^{*}, \end{aligned}$$
(B.5)

where

$$\begin{aligned}&Y_{N_{4},\tilde{N},N_{2}}\left( \zeta ,\zeta ';\mu ,\nu \right) \nonumber \\&\quad =\frac{i^{-\frac{\tilde{N}^{2}}{2}}}{\tilde{N}!}\int _{-\infty }^\infty \prod _{n=1}^{\tilde{N}}\frac{\textrm{d}\lambda _{n}}{2\pi k}e^{\frac{i}{4\pi k}\sum _{n=1}^{\tilde{N}}\lambda _{n}^{2}}e^{-\frac{i\zeta }{k}\left( \sum _{n=1}^{N_{4}}\mu _{n}-\sum _{n=1}^{\tilde{N}}\lambda _{n}\right) -\frac{i\zeta '}{k}\left( \sum _{n=1}^{\tilde{N}}\lambda _{n}-\sum _{n=1}^{N_{2}}\nu _{n}\right) }\nonumber \\&\qquad \times \frac{\prod _{m<m'}^{N_{4}}2\sinh \frac{\mu _{m}-\mu _{m'}}{2k}\prod _{n<n'}^{\tilde{N}}2\sinh \frac{\lambda _{n}-\lambda _{n'}}{2k}}{\prod _{m=1}^{N_{4}}\prod _{n=1}^{\tilde{N}}2\cosh \frac{\mu _{m}-\lambda _{n}}{2k}}\frac{\prod _{m<m'}^{\tilde{N}}2\sinh \frac{\lambda _{m}-\lambda _{m'}}{2k}\prod _{n<n'}^{N_{2}}2\sinh \frac{\nu _{n}-\nu _{n'}}{2k}}{\prod _{m=1}^{\tilde{N}}\prod _{n=1}^{N_{2}}2\cosh \frac{\lambda _{m}-\nu _{n}}{2k}}. \end{aligned}$$
(B.6)

We first focus on \(Y_{N_{4},\tilde{N},N_{2}}\) and rewrite it in the operator formalism. By combining the Cauchy determinant formula and the Vandermonde determinant formula [81]

$$\begin{aligned}&\frac{\prod _{m<m'}^{K}2\sinh \frac{\mu _{m}-\mu _{m'}}{2k}\prod _{n<n'}^{K+L}2\sinh \frac{\lambda _{n}-\lambda _{n'}}{2k}}{\prod _{m=1}^{K}\prod _{n=1}^{K+L}2\cosh \frac{\mu _{m}-\lambda _{n}}{2k}} =\det \left( \begin{array}{c} \left[ \left( -1\right) ^{L}\frac{e^{\frac{L}{2k}\left( \mu _{m}-\lambda _{n}\right) }}{2\cosh \frac{\mu _{m}-\lambda _{n}}{2k}}\right] _{m,n}^{K\times \left( K+L\right) }\\ \left[ e^{\frac{1}{k}\left( \frac{L+1}{2}-r\right) \lambda _{n}}\right] _{r,n}^{L\times \left( K+L\right) } \end{array}\right) , \end{aligned}$$
(B.7)
$$\begin{aligned}&\frac{\prod _{m<m'}^{K+L}2\sinh \frac{\lambda _{m}-\lambda _{m'}}{2k}\prod _{n<n'}^{K}2\sinh \frac{\nu _{n}-\nu _{n'}}{2k}}{\prod _{m=1}^{K+L}\prod _{n=1}^{K}2\cosh \frac{\lambda _{m}-\nu _{n}}{2k}}\nonumber \\&=\det \left( \begin{array}{cc} \left[ \left( -1\right) ^{L}\frac{e^{-\frac{L}{2k}\left( \lambda _{m}-\nu _{n}\right) }}{2\cosh \frac{\lambda _{m}-\nu _{n}}{2k}}\right] _{m,n}^{\left( K+L\right) \times K}&\left[ e^{\frac{1}{k}\left( \frac{L+1}{2}-r\right) \lambda _{m}}\right] _{m,r}^{\left( K+L\right) \times L}\end{array}\right) , \end{aligned}$$
(B.8)

we can rewrite the third line of (B.6) as the determinant of the product of two matrices. The notation for the operator formalism is in (B.1),(B.2). The elements of the matrices can be rewritten in the operator formalism. We will make use of the following identities

(B.9)
(B.10)

where in the second line, as we shifted the integration contour from \({\mathbb {R}}\) to \({\mathbb {R}}+i\pi L\), we obtain a summation over the resulting residues. Fortunately, the contribution to the determinant of the latter vanishes being a linear combination of rows. Indeed it is evident from (B.7),(B.8) that the sum of the residues is a linear combination of the lower (or right) elements.

The third line of \(Y_{N_{4},\tilde{N},N_{2}}\) is now written in the operator formalism. To write all of factors in the operator formalism, we multiply the first matrix by a Fresnel factor \(e^{\frac{i}{4\pi k}\sum _{n=1}^{\bar{N}}\lambda _n^2}\). We also include the first FI factor, depending on \(\zeta \), in the first matrix and the second FI factor, depending on \(\zeta '\), in the second matrix. After performing the similarity transformations

(B.11)

we obtain

(B.12)

where \(\tilde{M}=N_4-\tilde{N}\) and \(t_{\zeta ,n,r}\) is defined in (B.3).

We now return to the matrix model (B.5). Upon the similarity transformation

(B.13)
(B.14)
(B.15)

and by using the formulae

(B.16)

we find that the matrix models can be written as

$$\begin{aligned}&Z_{k}\left( N;M_{1},M_{2},M,\zeta _{1},\zeta _{2}\right) \nonumber \\&\quad =\frac{1}{N_{2}!N_{4}!}e^{i\Theta _{k}\left( M_{1},M_{2},M,\zeta _{1},\zeta _{2}\right) }\int _{-\infty }^\infty \prod _{n=1}^{N_{4}}\frac{\textrm{d}\mu _{n}}{2\pi k}\prod _{n=1}^{N_{2}}\frac{\textrm{d}\nu _{n}}{2\pi k}\tilde{Y}_{N_{4},N_{1},N_{2}}\left( 0,\zeta _{1};\mu ,\nu \right) \nonumber \\&\qquad \left( \tilde{Y}_{N_{4},N_{3},N_{2}}\left( \zeta _{2},0;\mu ,\nu \right) \right) ^{*}, \end{aligned}$$
(B.17)

where

(B.18)

and

$$\begin{aligned}&\Theta _{k}\left( M_{1},M_{2},M,\zeta _{1},\zeta _{2}\right) \nonumber \\&\quad =\theta _{k}\left( M_{1},0\right) +\theta _{k}\left( M_{1}-M,\zeta _{1}\right) -\theta _{k}\left( M_{2},\zeta _{2}\right) -\theta _{k}\left( M_{2}-M,0\right) , \end{aligned}$$
(B.19)
$$\begin{aligned}&\theta _{k}\left( M,\zeta \right) =\frac{\pi }{k}\left[ \frac{1}{12}\left( M^{3}-M\right) -M\zeta ^{2}\right] . \end{aligned}$$
(B.20)

\(\tilde{Y}_{N_{4},\tilde{N},N_{2}}\) can be computed as follows. Since the second determinant is an anti-symmetric function of \(\lambda _{m}\), we can simplify the first determinant by using

$$\begin{aligned}&\frac{1}{N!}\int _{-\infty }^\infty d^{N}\lambda \det \left( \left[ g_{m}\left( \lambda _{n}\right) \right] _{m,n}^{N\times N}\right) f\left( \lambda _{1},\lambda _{2},\ldots ,\lambda _{N}\right) \nonumber \\&\quad =\int _{-\infty }^\infty d^{N}\lambda \prod _{n}^{N}g_{n}\left( \lambda _{n}\right) f\left( \lambda _{1},\lambda _{2},\ldots ,\lambda _{N}\right) , \end{aligned}$$
(B.21)

which holds for any anti-symmetric function \(f\left( \varvec{\lambda }\right) \). We decompose the other determinant by using (B.10),(B.9) and (B.7),(B.8) backwards. Now we can perform the integration by using the delta functions coming form the inner products of the position operators. After a short computation, we obtain

$$\begin{aligned} \tilde{Y}_{N_{4},\tilde{N},N_{2}}\left( \zeta ,\zeta ';\mu ,\nu \right)&= i^{-\frac{\tilde{N}^{2}}{2}+\frac{\tilde{M}^{2}}{2}}e^{\frac{2\pi i\zeta \zeta '\tilde{M}}{k}}e^{-\frac{i\zeta '}{k}\left( \sum _{n=1}^{N_{4}}\mu _{n}-\sum _{n=1}^{N_{2}}\nu _{n}\right) }Z_{k}^{\left( \text {CS}\right) }\left( \tilde{M}\right) \nonumber \\&\times \prod _{n=1}^{N_{4}}\frac{\prod _{r=1}^{\tilde{M}}2\sinh \frac{\mu _{n}+t_{\zeta ,\tilde{M},r}}{2k}}{2\cosh \frac{\mu _{n}+2\pi \zeta -i\pi \tilde{M}}{2}}\prod _{n=1}^{N_{2}}\frac{1}{\prod _{r=1}^{\tilde{M}}2\cosh \frac{\nu _{n}+t_{\zeta ,\tilde{M},r}}{2k}}\nonumber \\&\times \frac{\prod _{m<m'}^{N_{4}}2\sinh \frac{\mu _{m}-\mu _{m'}}{2k}\prod _{n<n'}^{N_{2}}2\sinh \frac{\nu _{n}-\nu _{n'}}{2k}}{\prod _{m=1}^{N_{4}}\prod _{n=1}^{N_{2}}2\cosh \frac{\mu _{m}-\nu _{n}}{2k}}, \end{aligned}$$
(B.22)

where

$$\begin{aligned} Z_{k}^{\left( \text {CS}\right) }\left( L\right)&=\frac{1}{k^{\frac{L}{2}}}\prod _{j<j'}^{L}2\sin \frac{\pi }{k}\left( j'-j\right) , \end{aligned}$$
(B.23)

is the partition function of \(\textrm{U}\left( L\right) _{k}\) pure Chern–Simons theory. We again use the determinant formula (B.7),(B.8) and the operator formula (B.10),(B.9) for the factor at the third line, and we include the FI factors and the factors in the second line into the matrix. As a result, we obtain

(B.24)

where

$$\begin{aligned} S_{L}\left( x\right) =i^{L}\frac{\prod _{r=1}^{L}2\sinh \frac{x-2\pi i\left( \frac{L+1}{2}-r\right) }{2k}}{2\cosh \frac{x+i\pi L}{2}},\quad C_{L}\left( x\right) =\frac{1}{\prod _{r=1}^{L}2\cosh \frac{x-2\pi i\left( \frac{L+1}{2}-r\right) }{2k}}. \end{aligned}$$
(B.25)

By using the recursive formula for the quantum dilogarithm functions (A.8), (B.25) can be written in terms of the quantum dilogarithm as (\(b=\sqrt{k}\))

$$\begin{aligned} S_{L}\left( x\right) =e^{\frac{k-L}{2k}x}\frac{\Phi _{ b}\left( \frac{x}{2\pi b}-\frac{iL}{2b}+\frac{i}{2} b\right) }{\Phi _{ b}\left( \frac{x}{2\pi b}+\frac{iL}{2b}-\frac{i}{2} b\right) },\quad C_{L}\left( x\right) =e^{\frac{L}{2k}x}\frac{\Phi _{ b}\left( \frac{x}{2\pi b}+\frac{iL}{2 b}\right) }{\Phi _{ b}\left( \frac{x}{2\pi b}-\frac{iL}{2 b}\right) }. \end{aligned}$$
(B.26)

By substituting (B.24) into (B.17), we finally arrive at

(B.27)

where

$$\begin{aligned} \widehat{D}_{1}^{\text {VI}}&=e^{-\frac{i\zeta _{1}}{k}\widehat{x}}S_{M_1}\left( {{\widehat{x}}}\right) \frac{1}{2\cosh \frac{\widehat{p}-i\pi M}{2}}e^{\frac{i\zeta _{1}}{k}\widehat{x}}C_{M_1}\left( {{\widehat{x}}}\right) , \end{aligned}$$
(B.28)
$$\begin{aligned} \widehat{d}_{1}^{\text {VI}}&=e^{\frac{i\zeta _{1}}{k}\widehat{x}}C_{M_1}\left( {{\widehat{x}}}\right) ,\end{aligned}$$
(B.29)
$$\begin{aligned} \widehat{D}_{2}^{\text {VI}}&=C_{M_2}\left( {{\widehat{x}}}+2\pi \zeta _2\right) \frac{1}{2\cosh \frac{\widehat{p}+\pi iM}{2}}S_{M_2}\left( {{\widehat{x}}}+2\pi \zeta _2\right) ,\end{aligned}$$
(B.30)
$$\begin{aligned} \widehat{d}_{2}^{\text {VI}}&=C_{M_2}\left( {\widehat{x}}+2\pi \zeta _2\right) . \end{aligned}$$
(B.31)

Let us perform a short digression on the formulas which can be used to rephrase our final result (B.27) in a more concise way, though we do not use them in the main text. Note that by using the formula

$$\begin{aligned}{} & {} \frac{1}{N!}\int _{-\infty }^\infty d^{N}\nu \det \left( \left[ f_{m}\left( \nu _{n}\right) \right] _{m,n}^{N\times N}\right) \det \left( \left[ g_{n}\left( \nu _{m}\right) \right] _{m,n}^{N\times N}\right) \nonumber \\ {}{} & {} \quad =\det \left( \left[ \int _{-\infty }^\infty \textrm{d}\nu f_{m}\left( \nu \right) g_{n}\left( \nu \right) \right] _{m,n}^{N\times N}\right) , \end{aligned}$$
(B.32)

the partition function for \(M>0\) (B.27), which is written as a \(\left( 2N+M\right) \) dimensional integral, can be further reduced to a N dimensional integral:

(B.33)

which implies that the grand partition function (3.2) can be written as [81]

(B.34)

1.1 B.1 \(M=0\) case

When \(M=0\), the matrix model (B.33) simplifies to

(B.35)

where

$$\begin{aligned}&\widehat{\rho }_{k}\left( M_{1},M_{2},0,\zeta _{1},\zeta _{2}\right) \nonumber \\&\quad =\left. {{\widehat{D}}}_1^{\text {VI}} {{\widehat{D}}}_2^{\text {VI}} \right| _{M=0}\nonumber \\&\quad = S_{M_{1}}\left( \widehat{x}\right) \frac{1}{2\cosh \frac{\widehat{p}+2\pi \zeta _{1}}{2}}C_{M_{1}}\left( \widehat{x}\right) C_{M_{2}}\left( \widehat{x}+2\pi \zeta _{2}\right) \frac{1}{2\cosh \frac{\widehat{p}}{2}}S_{M_{2}}\left( \widehat{x}+2\pi \zeta _{2}\right) . \end{aligned}$$
(B.36)

This is the same as (3.7). For this expression, we can relate the density matrix to the quantum curve [39, 82]. The important relations are

$$\begin{aligned}&C_{L}^{-1}\left( \widehat{x}\right) e^{\pm \frac{1}{2}\widehat{p}}S_{L}^{-1}\left( \widehat{x}\right) \nonumber \\&\quad =e^{\mp \frac{1}{2}i\pi L}e^{\pm \frac{1}{2}\widehat{p}}\frac{\Phi _{ b}\left( \frac{\widehat{x}}{2\pi b}-\frac{iL}{2 b}\pm \frac{i}{2} b\right) }{\Phi _{ b}\left( \frac{\widehat{x}}{2\pi b}+\frac{iL}{2 b}\pm \frac{i}{2} b\right) }\frac{\Phi _{ b}\left( \frac{\widehat{x}}{2\pi b}+\frac{iL}{2b}-\frac{i}{2} b\right) }{\Phi _{ b}\left( \frac{\widehat{x}}{2\pi b}-\frac{iL}{2b}+\frac{i}{2} b\right) }e^{-\frac{1}{2}\widehat{x}}\nonumber \\&\quad =e^{\pm \frac{1}{2}\widehat{p}}\left( e^{\pm \frac{1}{2}i\pi L}e^{\frac{1}{2}\widehat{x}}+e^{\mp \frac{1}{2}i\pi L}e^{-\frac{1}{2}\widehat{x}}\right) , \end{aligned}$$
(B.37)
$$\begin{aligned}&S_{L}^{-1}\left( \widehat{x}\right) e^{\pm \frac{1}{2}\widehat{p}}C_{L}^{-1}\left( \widehat{x}\right) \nonumber \\&\quad =e^{\pm \frac{1}{2}i\pi L}e^{-\frac{1}{2}\widehat{x}}\frac{\Phi _{ b}\left( \frac{\widehat{x}}{2\pi b}+\frac{iL}{2 b}-\frac{i}{2} b\right) }{\Phi _{ b}\left( \frac{\widehat{x}}{2\pi b}-\frac{iL}{2 b}+\frac{i}{2} b\right) }\frac{\Phi _{ b}\left( \frac{\widehat{x}}{2\pi b}-\frac{iL}{2 b}\mp \frac{i}{2} b\right) }{\Phi _{ b}\left( \frac{\widehat{x}}{2\pi b}+\frac{iL}{2 b}\mp \frac{i}{2} b\right) }e^{\pm \frac{1}{2}\widehat{p}}\nonumber \\&\quad =\left( e^{\mp \frac{1}{2}i\pi L}e^{\frac{1}{2}\widehat{x}}+e^{\pm \frac{1}{2}i\pi L}e^{-\frac{1}{2}\widehat{x}}\right) e^{\pm \frac{1}{2}\widehat{p}}, \end{aligned}$$
(B.38)

where we used the Baker–Campbell–Hausdorff formula \(e^{\alpha \widehat{x}}e^{\beta \widehat{p}}=e^{2\pi i\alpha \beta k}e^{\beta \widehat{p}}e^{\alpha \widehat{x}}\) and (A.8). By using these relations, we obtain

$$\begin{aligned}&S_{L}\left( \widehat{x}\right) \frac{1}{2\cosh \frac{\widehat{p}}{2}}C_{L}\left( \widehat{x}\right) \nonumber \\&\quad =\left[ e^{\frac{1}{2}\widehat{p}}\left( e^{\frac{1}{2}i\pi L}e^{\frac{1}{2}\widehat{x}}+e^{-\frac{1}{2}i\pi L}e^{-\frac{1}{2}\widehat{x}}\right) +e^{-\frac{1}{2}\widehat{p}}\left( e^{-\frac{1}{2}i\pi L}e^{\frac{1}{2}\widehat{x}}+e^{\frac{1}{2}i\pi L}e^{-\frac{1}{2}\widehat{x}}\right) \right] ^{-1}, \end{aligned}$$
(B.39)
$$\begin{aligned}&C_{L}\left( \widehat{x}\right) \frac{1}{2\cosh \frac{\widehat{p}}{2}}S_{L}\left( \widehat{x}\right) \nonumber \\&\quad =\left[ \left( e^{-\frac{1}{2}i\pi L}e^{\frac{1}{2}\widehat{x}}+e^{\frac{1}{2}i\pi L}e^{-\frac{1}{2}\widehat{x}}\right) e^{\frac{1}{2}\widehat{p}}+\left( e^{\frac{1}{2}i\pi L}e^{\frac{1}{2}\widehat{x}}+e^{-\frac{1}{2}i\pi L}e^{-\frac{1}{2}\widehat{x}}\right) e^{-\frac{1}{2}\widehat{p}}\right] ^{-1}. \end{aligned}$$
(B.40)

The inverse of the density matrix is the product of the above two quantum curves. Therefore, we finally obtain

$$\begin{aligned}&\widehat{\rho }_{k}^{-1}\left( M_{1},M_{2},0,\zeta _{1},\zeta _{2}\right) \nonumber \\&\quad =\left[ \left( e^{-\frac{1}{2}i\pi M_2+\pi \zeta _2}e^{\frac{1}{2}\widehat{x}}+e^{\frac{1}{2}i\pi M_2-\pi \zeta _2}e^{-\frac{1}{2}\widehat{x}}\right) e^{\frac{1}{2}\widehat{p}}\right. \nonumber \\&\left. \qquad +\left( e^{\frac{1}{2}i\pi M_2+\pi \zeta _2}e^{\frac{1}{2}\widehat{x}}+e^{-\frac{1}{2}i\pi M_2-\pi \zeta _2}e^{-\frac{1}{2}\widehat{x}}\right) e^{-\frac{1}{2}\widehat{p}}\right] \nonumber \\&\qquad \times \left[ e^{\pi \zeta _1}e^{\frac{1}{2}\widehat{p}}\left( e^{\frac{1}{2}i\pi M_1}e^{\frac{1}{2}\widehat{x}}+e^{-\frac{1}{2}i\pi M_1}e^{-\frac{1}{2}\widehat{x}}\right) +e^{-\pi \zeta _1}e^{-\frac{1}{2}\widehat{p}}\left( e^{-\frac{1}{2}i\pi M_1}e^{\frac{1}{2}\widehat{x}}+e^{\frac{1}{2}i\pi M_1}e^{-\frac{1}{2}\widehat{x}}\right) \right] \nonumber \\&\quad =e^{\frac{\pi i(M_{1}-M_{2})}{2}+\pi (\zeta _{1}+\zeta _{2})}e^{{\widehat{x}}+{\widehat{p}}}+[e^{\frac{\pi i(-M_{1}-M_{2})}{2}+\pi (\zeta _{1}+\zeta _{2})+\pi ik}+e^{\frac{\pi i(M_{1}+M_{2})}{2}+\pi (\zeta _{1}-\zeta _{2})-\pi ik}]e^{{\widehat{p}}}\nonumber \\&\qquad +e^{\frac{\pi i(-M_{1}+M_{2})}{2}+\pi (\zeta _{1}-\zeta _{2})}e^{-{\widehat{x}}+{\widehat{p}}}\nonumber \\&\qquad +[e^{\frac{\pi i(-M_{1}-M_{2})}{2}+\pi (-\zeta _{1}+\zeta _{2})}+e^{\frac{\pi i(M_{1}+M_{2})}{2}+\pi (\zeta _{1}+\zeta _{2})}]e^{{\widehat{x}}}\nonumber \\&\qquad +e^{\frac{\pi i(-M_{1}+M_{2})}{2}+\pi (-\zeta _{1}-\zeta _{2})}+e^{\frac{\pi i(-M_{1}+M_{2})}{2}+\pi (\zeta _{1}+\zeta _{2})}\nonumber \\&\qquad +e^{\frac{\pi i(M_{1}-M_{2})}{2}+\pi (-\zeta _{1}+\zeta _{2})}+e^{\frac{\pi i(M_{1}-M_{2})}{2}+\pi (\zeta _{1}-\zeta _{2})}\nonumber \\&\qquad +[e^{\frac{\pi i(-M_{1}-M_{2})}{2}+\pi (\zeta _{1}-\zeta _{2})}+e^{\frac{\pi i(M_{1}+M_{2})}{2}+\pi (-\zeta _{1}-\zeta _{2})}]e^{-{\widehat{x}}}\nonumber \\&\qquad +e^{\frac{\pi i(-M_{1}+M_{2})}{2}+\pi (-\zeta _{1}+\zeta _{2})}e^{{\widehat{x}}-{\widehat{p}}}+[e^{\frac{\pi i(-M_{1}-M_{2})}{2}+\pi (-\zeta _{1}-\zeta _{2})+\pi ik}\nonumber \\&\qquad +e^{\frac{\pi i(M_{1}+M_{2})}{2}+\pi (-\zeta _{1}+\zeta _{2})-\pi ik}]e^{-{\widehat{p}}}\nonumber \\&\qquad +e^{\frac{\pi i(M_{1}-M_{2})}{2}+\pi (-\zeta _{1}-\zeta _{2})}e^{-{\widehat{x}}-{\widehat{p}}}. \end{aligned}$$
(B.41)

This is the quantum curve associated to the (2,2) model for \(M=0\).

C Proof of (4.7): \({{\widehat{\rho }}}_k\left( M_1,M_2,0,\zeta _1,\zeta _2\right) \sim {{\widehat{\rho }}}_k\left( M_1,M_2,0,\zeta _2,\zeta _1\right) \)

First we notice the following identity

$$\begin{aligned}&e^{\frac{M}{2k}{{\widehat{x}}}} \frac{\Phi _b\left( \frac{{\widehat{x}}}{2\pi b}+\frac{iM}{2b}\right) }{\Phi _b\left( \frac{{\widehat{x}}}{2\pi b}-\frac{iM}{2b}\right) } \frac{1}{2\cosh \frac{{\widehat{p}}}{2}} e^{\left( \frac{1}{2}-\frac{M}{2k}\right) {{\widehat{x}}}} \frac{\Phi _b\left( \frac{{{\widehat{x}}}}{2\pi b}-\frac{iM}{2b}+\frac{ib}{2}\right) }{\Phi _b\left( \frac{{{\widehat{x}}}}{2\pi b}+\frac{iM}{2b}-\frac{ib}{2}\right) }\nonumber \\&\quad = e^{\left( \frac{1}{2}-\frac{M}{2k}\right) {{\widehat{p}}}} \frac{\Phi _b\left( \frac{{{\widehat{p}}}}{2\pi b}-\frac{iM}{2b}+\frac{ib}{2}\right) }{\Phi _b\left( \frac{{\widehat{p}}}{2\pi b}+\frac{iM}{2b}-\frac{ib}{2}\right) } \frac{1}{2\cosh \frac{{{\widehat{x}}}}{2}} e^{\frac{M}{2k}{{\widehat{p}}}} \frac{\Phi _b\left( \frac{{{\widehat{p}}}}{2\pi b}+\frac{iM}{2b}\right) }{\Phi _b\left( \frac{{{\widehat{p}}}}{2\pi b}-\frac{iM}{2b}\right) }. \end{aligned}$$
(C.1)

This identity can be proved by calculating the inverse of both sides. The inverse of the left-hand side can be calculated as

$$\begin{aligned}&\left( e^{\frac{M}{2k}{{\widehat{x}}}} \frac{\Phi _b\left( \frac{{{\widehat{x}}}}{2\pi b}+\frac{iM}{2b}\right) }{\Phi _b\left( \frac{{{\widehat{x}}}}{2\pi b}-\frac{iM}{2b}\right) } \frac{1}{2\cosh \frac{{{\widehat{p}}}}{2}} e^{\left( \frac{1}{2}-\frac{M}{2k}\right) {{\widehat{x}}}} \frac{\Phi _b\left( \frac{{{\widehat{x}}}}{2\pi b}-\frac{iM}{2b}+\frac{ib}{2}\right) }{\Phi _b\left( \frac{{\widehat{x}}}{2\pi b}+\frac{iM}{2b}-\frac{ib}{2}\right) } \right) ^{-1}\nonumber \\&\quad = \frac{\Phi _b\left( \frac{{{\widehat{x}}}}{2\pi b}+\frac{iM}{2b}-\frac{ib}{2}\right) }{\Phi _b\left( \frac{{\widehat{x}}}{2\pi b}-\frac{iM}{2b}+\frac{ib}{2}\right) } e^{\left( -\frac{1}{2}+\frac{M}{2k}\right) {{\widehat{x}}}} \left( e^{\frac{{{\widehat{p}}}}{2}}+e^{-\frac{{{\widehat{p}}}}{2}}\right) \frac{\Phi _b\left( \frac{{{\widehat{x}}}}{2\pi b}-\frac{iM}{2b}\right) }{\Phi _b\left( \frac{{{\widehat{x}}}}{2\pi b}+\frac{iM}{2b}\right) } e^{-\frac{M}{2k}{{\widehat{x}}}}. \end{aligned}$$
(C.2)

By moving \(e^{\pm \frac{{{\widehat{p}}}}{2}}\) to the right by using the formula \(e^{\pm \frac{{{\widehat{p}}}}{2}}f\left( {\widehat{x}}\right) e^{\mp \frac{{{\widehat{p}}}}{2}}=f\left( {{\widehat{x}}}\mp \pi ik\right) \), we are left with ratios of \(\Phi _b\) which can be simplified by the recursive formula (A.8). We finally obtain

$$\begin{aligned}&\left( e^{\frac{M}{2k}{{\widehat{x}}}} \frac{\Phi _b\left( \frac{{{\widehat{x}}}}{2\pi b}+\frac{iM}{2b}\right) }{\Phi _b\left( \frac{{{\widehat{x}}}}{2\pi b}-\frac{iM}{2b}\right) } \frac{1}{2\cosh \frac{{{\widehat{p}}}}{2}} e^{\left( \frac{1}{2}-\frac{M}{2k}\right) {{\widehat{x}}}} \frac{\Phi _b\left( \frac{{{\widehat{x}}}}{2\pi b}-\frac{iM}{2b}+\frac{ib}{2}\right) }{\Phi _b\left( \frac{{\widehat{x}}}{2\pi b}+\frac{iM}{2b}-\frac{ib}{2}\right) } \right) ^{-1}\nonumber \\&\quad = \left( e^{-\frac{\pi iM}{2}}e^{\frac{{\widehat{x}}}{2}}+e^{\frac{\pi iM}{2}}e^{-\frac{{\widehat{x}}}{2}}\right) e^{\frac{{{\widehat{p}}}}{2}} +\left( e^{\frac{\pi iM}{2}}e^{\frac{{{\widehat{x}}}}{2}}+e^{-\frac{\pi iM}{2}}e^{-\frac{{{\widehat{x}}}}{2}}\right) e^{-\frac{{\widehat{p}}}{2}}. \end{aligned}$$
(C.3)

In the same way the inverse of the right-hand side of (C.1) can be simplified as

$$\begin{aligned}&\left( e^{\left( \frac{1}{2}-\frac{M}{2k}\right) {{\widehat{p}}}} \frac{\Phi _b\left( \frac{{{\widehat{p}}}}{2\pi b}-\frac{iM}{2b}+\frac{ib}{2}\right) }{\Phi _b\left( \frac{{\widehat{p}}}{2\pi b}+\frac{iM}{2b}-\frac{ib}{2}\right) } \frac{1}{2\cosh \frac{{{\widehat{x}}}}{2}} e^{\frac{M}{2k}{{\widehat{p}}}} \frac{\Phi _b\left( \frac{{{\widehat{p}}}}{2\pi b}+\frac{iM}{2b}\right) }{\Phi _b\left( \frac{{{\widehat{p}}}}{2\pi b}-\frac{iM}{2b}\right) } \right) ^{-1}\nonumber \\&\quad = e^{\frac{{{\widehat{x}}}}{2}}\left( e^{-\frac{\pi iM}{2}}e^{\frac{{{\widehat{p}}}}{2}}+e^{\frac{\pi iM}{2}}e^{-\frac{{{\widehat{p}}}}{2}}\right) +e^{-\frac{{\widehat{x}}}{2}}\left( e^{\frac{\pi iM}{2}}e^{\frac{{\widehat{p}}}{2}}+e^{-\frac{\pi iM}{2}}e^{-\frac{{{\widehat{p}}}}{2}}\right) . \end{aligned}$$
(C.4)

This is identical to the inverse (C.3) of the left-hand side of (C.1).

By using the identity (C.1) we can show (4.7), namely \({{\widehat{\rho }}}_k\left( M_1,M_2,0,\zeta _1,\zeta _2\right) \sim {{\widehat{\rho }}}_k\left( M_1,M_2,0,\zeta _2,\zeta _1\right) \), as follows. First we reorder the terms in \({{\widehat{\rho }}}\) (4.1) cyclically

$$\begin{aligned}&{{\widehat{\rho }}}_k\left( M_1,M_2,0,\zeta _1,\zeta _2\right) \nonumber \\&\quad \sim e^{\pi \zeta _2} e^{\left( -\frac{i\zeta _1}{k}+1-\frac{M_1+M_2}{2k}\right) {\widehat{x}}} e^{\frac{i\zeta _2}{k}{{\widehat{p}}}} \frac{ \Phi _b\left( \frac{{{\widehat{x}}}}{2\pi b}-\frac{iM_2}{2b}+\frac{ib}{2}\right) }{ \Phi _b\left( \frac{{{\widehat{x}}}}{2\pi b}+\frac{iM_2}{2b}-\frac{ib}{2}\right) } \frac{1}{2\cosh \frac{{{\widehat{p}}}}{2}} \frac{ \Phi _b\left( \frac{{{\widehat{x}}}}{2\pi b}+\frac{iM_2}{2b}\right) }{ \Phi _b\left( \frac{{{\widehat{x}}}}{2\pi b}-\frac{iM_2}{2b}\right) }\nonumber \\&\qquad \times e^{-\frac{i\zeta _2}{k}{{\widehat{p}}}} e^{\left( \frac{i\zeta _1}{k}+\frac{M_1+M_2}{2k}\right) {{\widehat{x}}}} \frac{ \Phi _b\left( \frac{{{\widehat{x}}}}{2\pi b}+\frac{iM_1}{2b}\right) }{ \Phi _b\left( \frac{{{\widehat{x}}}}{2\pi b}+-\frac{iM_1}{2b}\right) } \frac{1}{2\cosh \frac{{{\widehat{p}}}}{2}} \frac{ \Phi _b\left( \frac{{{\widehat{x}}}}{2\pi b}-\frac{iM_1}{2b}+\frac{ib}{2}\right) }{ \Phi _b\left( \frac{{{\widehat{x}}}}{2\pi b}+\frac{iM_1}{2b}-\frac{ib}{2}\right) }. \end{aligned}$$
(C.5)

Now to each line we can apply the identity (C.1). After combining the exponential factors together and cyclically reordering the terms, we obtain

$$\begin{aligned}&{{\widehat{\rho }}}_k\left( M_1,M_2,0,\zeta _1,\zeta _2\right) \nonumber \\&\quad \sim e^{\pi \zeta _2} e^{\left( -\frac{i\zeta _1}{k}+1-\frac{M_1+M_2}{2k}\right) {\widehat{x}}} e^{\frac{i\zeta _2}{k}{{\widehat{p}}}} e^{\left( -\frac{1}{2}+\frac{M_2}{2k}\right) {{\widehat{x}}}} e^{\frac{M_2}{2k}{{\widehat{p}}}} \frac{ \Phi _b\left( \frac{{\widehat{p}}}{2\pi b}+\frac{iM_2}{2b}\right) }{ \Phi _b\left( \frac{{\widehat{p}}}{2\pi b}-\frac{iM_2}{2b}\right) }\nonumber \\&\qquad \frac{1}{2\cosh \frac{{\widehat{x}}}{2}} e^{\left( \frac{1}{2}-\frac{M_2}{2k}\right) {{\widehat{p}}}} \frac{ \Phi _b\left( \frac{{{\widehat{p}}}}{2\pi b}-\frac{iM_2}{2b}+\frac{ib}{2}\right) }{ \Phi _b\left( \frac{{{\widehat{p}}}}{2\pi b}+\frac{iM_2}{2b}-\frac{ib}{2}\right) }\nonumber \\&\qquad \times e^{-\frac{M_2}{2k}{{\widehat{x}}}} e^{-\frac{i\zeta _2}{k}{{\widehat{p}}}} e^{\left( \frac{i\zeta _1}{k}+\frac{M_1+M_2}{2k}\right) {{\widehat{x}}}} e^{-\frac{M_1}{2k}{{\widehat{x}}}} e^{\left( \frac{1}{2}-\frac{M_1}{2k}\right) {{\widehat{p}}}} \frac{ \Phi _b\left( \frac{{{\widehat{p}}}}{2\pi b}-\frac{iM_1}{2b}+\frac{ib}{2}\right) }{ \Phi _b\left( \frac{{{\widehat{p}}}}{2\pi b}+\frac{iM_1}{2b}-\frac{ib}{2}\right) }\nonumber \\&\qquad \frac{1}{2\cosh \frac{{{\widehat{x}}}}{2}} e^{\frac{M_1}{2k}{\widehat{p}}} \frac{ \Phi _b\left( \frac{{{\widehat{p}}}}{2\pi b}+\frac{iM_1}{2b}\right) }{ \Phi _b\left( \frac{{{\widehat{p}}}}{2\pi b}-\frac{iM_1}{2b}\right) }\nonumber \\&\qquad \times e^{\left( -\frac{1}{2}+\frac{M_1}{2k}\right) {{\widehat{x}}}}\nonumber \\&\sim e^{\pi \zeta _1} e^{\left( -\frac{i\zeta _2}{k}+1-\frac{M_1+M_2}{2k}\right) {\widehat{p}}} \frac{ \Phi _b\left( \frac{{{\widehat{p}}}}{2\pi b}-\frac{iM_1}{2b}+\frac{ib}{2}\right) }{ \Phi _b\left( \frac{{{\widehat{p}}}}{2\pi b}+\frac{iM_1}{2b}-\frac{ib}{2}\right) } \frac{ \Phi _b\left( \frac{{{\widehat{p}}}}{2\pi b}-\frac{iM_2}{2b}+\frac{ib}{2}+\frac{\zeta _1}{b}\right) }{ \Phi _b\left( \frac{{{\widehat{p}}}}{2\pi b}+\frac{iM_2}{2b}-\frac{ib}{2}+\frac{\zeta _1}{b}\right) } \frac{1}{2\cosh \frac{{{\widehat{x}}}}{2}}\nonumber \\&\qquad \times e^{\left( \frac{i\zeta _2}{k}+\frac{M_1+M_2}{2k}\right) {{\widehat{p}}}} \frac{ \Phi _b\left( \frac{{{\widehat{p}}}}{2\pi b}+\frac{iM_1}{2b}\right) }{ \Phi _b\left( \frac{{{\widehat{p}}}}{2\pi b}-\frac{iM_1}{2b}\right) } \frac{ \Phi _b\left( \frac{{\widehat{p}}}{2\pi b}+\frac{iM_2}{2b}+\frac{\zeta _1}{b}\right) }{ \Phi _b\left( \frac{{{\widehat{p}}}}{2\pi b}-\frac{iM_2}{2b}+\frac{\zeta _1}{b}\right) } \frac{1}{2\cosh \frac{{{\widehat{x}}}}{2}}. \end{aligned}$$
(C.6)

The last expression coincides with \({{\widehat{\rho }}}\) (4.1) with the replacement \(\left( \zeta _1,\zeta _2,{{\widehat{x}}},{{\widehat{p}}}\right) \rightarrow \left( \zeta _2,\zeta _1,{{\widehat{p}}},-{{\widehat{x}}}\right) \). Since the change of variables in \({{\widehat{x}}},{{\widehat{p}}}\) is a canonical transformation, which can be realized by a similarity transformation, we conclude that \({{\widehat{\rho }}}_k\left( M_1,M_2,0,\zeta _2,\zeta _1\right) \sim {{\widehat{\rho }}}_k\left( M_1,M_2,0,\zeta _1,\zeta _2\right) \).

D Weyl transformations

We give the list of \(2\cdot 4!\) Weyl transformations discussed in section in terms of the generators, realized also as matrices, arranged by length. A positive integer \(i_1...i_k\) represents the product \(s_{i_1}\ldots s_{i_k}\):

$$\begin{aligned}&21343=\left( {\begin{matrix} 1 &{} 0 &{} -1 &{} 0 &{} 0 \\ 0 &{} 1 &{} -1 &{} 0 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} -1 \\ \end{matrix}} \right) ,\, 213413=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} -1 &{} 0 &{} -1 \\ {1}/{2} &{} {1}/{2} &{} -1 &{} 0 &{} 1 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ {1}/{2} &{} -{1}/{2} &{} 0 &{} 0 &{} 0 \\ \end{matrix}} \right) , 213423=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} -1 &{} 0 &{} 1 \\ {1}/{2} &{} {1}/{2} &{} -1 &{} 0 &{} -1 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ -{1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 0 \\ \end{matrix}} \right) ,\, \\&432134=\left( {\begin{matrix} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} -1 \\ \end{matrix}} \right) ,\, 452134=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} -1 &{} 1 &{} 0 \\ {1}/{2} &{} {1}/{2} &{} -1 &{} -1 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ {1}/{2} &{} -{1}/{2} &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} -1 \\ \end{matrix}} \right) ,\, 2134213=\left( {\begin{matrix} 0 &{} 1 &{} -1 &{} 0 &{} 0 \\ 1 &{} 0 &{} -1 &{} 0 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ \end{matrix}} \right) ,\, \\&4532134=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} 0 &{} 1 &{} 0 \\ {1}/{2} &{} {1}/{2} &{} 0 &{} -1 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ {1}/{2} &{} -{1}/{2} &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} -1 \\ \end{matrix}} \right) ,\, 2345134=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} -1 &{} 0 &{} -1 \\ {1}/{2} &{} {1}/{2} &{} -1 &{} 0 &{} 1 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ {1}/{2} &{} -{1}/{2} &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ \end{matrix}} \right) ,\\&\quad 1345234=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} -1 &{} 0 &{} 1 \\ {1}/{2} &{} {1}/{2} &{} -1 &{} 0 &{} -1 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ {1}/{2} &{} -{1}/{2} &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} -1 &{} 0 \\ \end{matrix}} \right) ,\, \\&432134131=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} -1 \\ {1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 1 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ {1}/{2} &{} -{1}/{2} &{} 0 &{} 0 &{} 0 \\ \end{matrix}} \right) ,\, 452134131=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} -1 &{} 1 &{} 0 \\ {1}/{2} &{} {1}/{2} &{} -1 &{} -1 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} -1 \\ {1}/{2} &{} -{1}/{2} &{} 0 &{} 0 &{} 0 \\ \end{matrix}} \right) ,\\&\quad 432134232=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 1 \\ {1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} -1 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ -{1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 0 \\ \end{matrix}} \right) ,\, \\&452134232=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} -1 &{} 1 &{} 0 \\ {1}/{2} &{} {1}/{2} &{} -1 &{} -1 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ -{1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 0 \\ \end{matrix}} \right) ,\, 4532134131=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} 0 &{} 1 &{} 0 \\ {1}/{2} &{} {1}/{2} &{} 0 &{} -1 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} -1 \\ {1}/{2} &{} -{1}/{2} &{} 0 &{} 0 &{} 0 \\ \end{matrix}} \right) ,\\&\quad 2345134131=\left( {\begin{matrix} 1 &{} 0 &{} -1 &{} 0 &{} 0 \\ 0 &{} 1 &{} -1 &{} 0 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} -1 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ \end{matrix}} \right) ,\, \\&1345234131=\left( {\begin{matrix} 0 &{} 1 &{} -1 &{} 0 &{} 0 \\ 1 &{} 0 &{} -1 &{} 0 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} -1 \\ 0 &{} 0 &{} 0 &{} -1 &{} 0 \\ \end{matrix}} \right) ,\, 2345321341=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} -1 \\ {1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 1 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ {1}/{2} &{} -{1}/{2} &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ \end{matrix}} \right) ,\\&\quad 4532134232=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} 0 &{} 1 &{} 0 \\ {1}/{2} &{} {1}/{2} &{} 0 &{} -1 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ -{1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 0 \\ \end{matrix}} \right) ,\, \\&2345134232=\left( {\begin{matrix} 0 &{} 1 &{} -1 &{} 0 &{} 0 \\ 1 &{} 0 &{} -1 &{} 0 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ \end{matrix}} \right) ,\, 1345234232=\left( {\begin{matrix} 1 &{} 0 &{} -1 &{} 0 &{} 0 \\ 0 &{} 1 &{} -1 &{} 0 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ 0 &{} 0 &{} 0 &{} -1 &{} 0 \\ \end{matrix}} \right) ,\\&\quad 1345321342=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 1 \\ {1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} -1 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ {1}/{2} &{} -{1}/{2} &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} -1 &{} 0 \\ \end{matrix}} \right) ,\, \\&4321343213=\left( {\begin{matrix} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ \end{matrix}} \right) ,\, 4521343213=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} -1 &{} 1 &{} 0 \\ {1}/{2} &{} {1}/{2} &{} -1 &{} -1 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ -{1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ \end{matrix}} \right) ,\\&\quad 3213452134=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} -1 &{} -1 &{} 0 \\ {1}/{2} &{} {1}/{2} &{} -1 &{} 1 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ {1}/{2} &{} -{1}/{2} &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ \end{matrix}} \right) ,\, \\&23453213431=\left( {\begin{matrix} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} -1 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ \end{matrix}} \right) ,\, 13453213432=\left( {\begin{matrix} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ 0 &{} 0 &{} 0 &{} -1 &{} 0 \\ \end{matrix}} \right) ,\\&\quad 45321343213=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} 0 &{} 1 &{} 0 \\ {1}/{2} &{} {1}/{2} &{} 0 &{} -1 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ -{1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ \end{matrix}} \right) ,\, \\&23451343213=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} -1 &{} 0 &{} 1 \\ {1}/{2} &{} {1}/{2} &{} -1 &{} 0 &{} -1 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ -{1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ \end{matrix}} \right) ,\, 13452343213=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} -1 &{} 0 &{} -1 \\ {1}/{2} &{} {1}/{2} &{} -1 &{} 0 &{} 1 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ -{1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} -1 &{} 0 \\ \end{matrix}} \right) ,\\&\quad 32134532134=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} 0 &{} -1 &{} 0 \\ {1}/{2} &{} {1}/{2} &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ {1}/{2} &{} -{1}/{2} &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ \end{matrix}} \right) ,\, \\&1345321342131=\left( {\begin{matrix} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} -1 \\ 0 &{} 0 &{} 0 &{} -1 &{} 0 \\ \end{matrix}} \right) ,\, 3213452134131=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} -1 &{} -1 &{} 0 \\ {1}/{2} &{} {1}/{2} &{} -1 &{} 1 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} -1 \\ -{1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 0 \\ \end{matrix}} \right) ,\\&\quad 2345321342132=\left( {\begin{matrix} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ \end{matrix}} \right) ,\, \\&3213452134232=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} -1 &{} -1 &{} 0 \\ {1}/{2} &{} {1}/{2} &{} -1 &{} 1 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ {1}/{2} &{} -{1}/{2} &{} 0 &{} 0 &{} 0 \\ \end{matrix}} \right) ,\, 5432134521343=\left( {\begin{matrix} 1 &{} 0 &{} -1 &{} 0 &{} 0 \\ 0 &{} 1 &{} -1 &{} 0 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} -1 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ \end{matrix}} \right) ,\\&\quad 13453213432131=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} -1 \\ {1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 1 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ -{1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} -1 &{} 0 \\ \end{matrix}} \right) ,\, \\&32134532134131=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} 0 &{} -1 &{} 0 \\ {1}/{2} &{} {1}/{2} &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} -1 \\ -{1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 0 \\ \end{matrix}} \right) ,\, 23453213432132=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 1 \\ {1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} -1 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ -{1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ \end{matrix}} \right) ,\\&\quad 32134532134232=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} 0 &{} -1 &{} 0 \\ {1}/{2} &{} {1}/{2} &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ {1}/{2} &{} -{1}/{2} &{} 0 &{} 0 &{} 0 \\ \end{matrix}} \right) ,\, \\&32134521343213=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} -1 &{} -1 &{} 0 \\ {1}/{2} &{} {1}/{2} &{} -1 &{} 1 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ -{1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} -1 \\ \end{matrix}} \right) ,\, 54321345213413=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} -1 &{} 0 &{} -1 \\ {1}/{2} &{} {1}/{2} &{} -1 &{} 0 &{} 1 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} -1 &{} 0 \\ -{1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 0 \\ \end{matrix}} \right) ,\\&\quad 54321345213423=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} -1 &{} 0 &{} 1 \\ {1}/{2} &{} {1}/{2} &{} -1 &{} 0 &{} -1 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} -1 &{} 0 \\ {1}/{2} &{} -{1}/{2} &{} 0 &{} 0 &{} 0 \\ \end{matrix}} \right) ,\, \\&54321345432134=\left( {\begin{matrix} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} -1 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 1 \\ \end{matrix}} \right) ,\, 321345321343213=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} 0 &{} -1 &{} 0 \\ {1}/{2} &{} {1}/{2} &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ -{1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} -1 \\ \end{matrix}} \right) ,\\&\quad , 543213452134213=\left( {\begin{matrix} 0 &{} 1 &{} -1 &{} 0 &{} 0 \\ 1 &{} 0 &{} -1 &{} 0 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} -1 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} -1 \\ \end{matrix}} \right) ,\, \\&54321345432134131=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} -1 \\ {1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 1 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} -1 &{} 0 \\ -{1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 0 \\ \end{matrix}} \right) ,\, 54321345432134232=\left( {\begin{matrix} {1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} 1 \\ {1}/{2} &{} {1}/{2} &{} 0 &{} 0 &{} -1 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} -1 &{} 0 \\ {1}/{2} &{} -{1}/{2} &{} 0 &{} 0 &{} 0 \\ \end{matrix}} \right) ,\\&\quad 543213454321343213=\left( {\begin{matrix} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} -1 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} -1 \\ \end{matrix}} \right) . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonelli, G., Globlek, F., Kubo, N. et al. M2-branes and \({\mathfrak {q}}\)-Painlevé equations. Lett Math Phys 112, 109 (2022). https://doi.org/10.1007/s11005-022-01597-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-022-01597-0

Keywords

Mathematics Subject Classification

Navigation