Skip to main content
Log in

Tracing cyclic homology pairings under twisting of graded algebras

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a description of cyclic cohomology and its pairing with K-groups for 2-cocycle deformation of algebras graded over discrete groups. The proof relies on a realization of monodromy for the Gauss–Manin connection on periodic cyclic cohomology in terms of the cup product action of group cohomology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. André, M.: Le \(d_{2}\) de la suite spectrale en cohomologie des groupes. C. R. Acad. Sci. Paris (French) 260, 2669–2671 (1965)

    MATH  Google Scholar 

  2. Behrstock, J., Druţu, C.: Divergence, thick groups, and short conjugators. Ill. J. Math. 58(4), 939–980 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Bonic, R.A.: Symmetry in group algebras of discrete groups. Pac. J. Math. 11, 73–94 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brown, K.S.: Cohomology of Groups, Graduate Texts in Mathematics, vol. 87. Springer, New York (1994). ISBN=0-387-90688-6 (Corrected reprint of the 1982 original)

  5. Buck, J., Walters, S.: Connes–Chern characters of hexic and cubic modules. J. Oper. Theory 57(1), 35–65 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Burghelea, D.: The cyclic homology of the group rings. Comment. Math. Helv. 60(3), 354–365 (1985). https://doi.org/10.1007/BF02567420

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, X., Wei, S.: Spectral invariant subalgebras of reduced crossed product \(\text{ C }^*\)-algebras. J. Funct. Anal. 197(1), 228–246 (2003). https://doi.org/10.1016/S0022-1236(02)00031-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Connes, A.: Noncommutative differential geometry. Inst. Hautes Études Sci. Publ. Math. 62, 257–360 (1985)

    Article  MathSciNet  Google Scholar 

  9. Connolly, F., Koźniewski, T.: Rigidity and crystallographic groups. I. Invent. Math. 99(1), 25–48 (1990). https://doi.org/10.1007/BF01234410

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Cuntz, J.: Cyclic Theory, Bivariant \(K\)-Theory and the Bivariant Chern–Connes Character, Cyclic Homology in Non-commutative Geometry, pp. 1–72. Springer, Berlin (2004). (Operator Algebras and Non-commutative Geometry, II)

    Google Scholar 

  11. Davis, J.F., Lück, W.: The topological K-theory of certain crystallographic groups. J. Noncommut. Geom. 7(2), 373–431 (2013). https://doi.org/10.4171/JNCG/121

    Article  MathSciNet  MATH  Google Scholar 

  12. Echterhoff, S., Lück, W., Phillips, N.C., Walters, S.: The structure of crossed products of irrational rotation algebras by finite subgroups of \(\text{ SL }_2(\mathbb{Z})\). J. Reine Angew. Math. 639, 173–221 (2010). https://doi.org/10.1515/CRELLE.2010.015. arXiv:math/0609784

  13. Elliott, G.A.: On the \(K\)-Theory of the \(C^{\ast } \)-Algebra Generated by a Projective Representation of a Torsion-free Discrete Abelian Group, Operator Algebras and Group Representations, vol. I (Neptun, 1980), pp. 157–184. Pitman, Boston (1984)

  14. Getzler, E.: Cartan Homotopy Formulas and the Gauss–Manin Connection in Cyclic Homology, Quantum Deformations of Algebras and Their Representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), pp. 65–78. Bar-Ilan University, Ramat Gan (1993)

  15. Goerss, P.G., Jardine, J.F.: Simplicial Homotopy Theory, Progress in Mathematics, vol. 174. Birkhäuser Verlag, Basel (1999). https://doi.org/10.1007/978-3-0348-8707-6. ISBN=3-7643-6064-X

  16. Higson, N., Kasparov, G.: \(E\)-theory and \(KK\)-theory for groups which act properly and isometrically on Hilbert space. Invent. Math. 144(1), 23–74 (2001). https://doi.org/10.1007/s002220000118

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Jenkins, J.W.: Symmetry and nonsymmetry in the group algebras of discrete groups. Pac. J. Math. 32, 131–145 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ji, R.: A module structure on cyclic cohomology of group graded algebras. K Theory 7(4), 369–399 (1993). https://doi.org/10.1007/BF00962054

    Article  MathSciNet  MATH  Google Scholar 

  19. Ji, R., Ogle, C., Ramsey, B.: Relatively hyperbolic groups, rapid decay algebras and a generalization of the Bass conjecture. J. Noncommut. Geom. 4(1), 83–124 (2010). https://doi.org/10.4171/JNCG/50. (With an appendix by Ogle)

  20. Ji, R., Schweitzer, L.B.: Spectral invariance of smooth crossed products, and rapid decay locally compact groups. K Theory 10(3), 283–305 (1996). https://doi.org/10.1007/BF00538186

    Article  MathSciNet  MATH  Google Scholar 

  21. Jolissaint, P.: Rapidly decreasing functions in reduced \(\text{ C }^*\)-algebras of groups. Trans. Am. Math. Soc. 317(1), 167–196 (1990). https://doi.org/10.2307/2001458

    Article  MathSciNet  MATH  Google Scholar 

  22. Karoubi, M.: Homologie cyclique des groupes et des algèbres. C. R. Acad. Sci. Paris Sér. I Math. 297(7), 381–384 (1983)

    MathSciNet  MATH  Google Scholar 

  23. Lafforgue, V.: \(K\)-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes. Invent. Math. 149(1), 1–95 (2002). https://doi.org/10.1007/s002220200213

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. Lafforgue, V.: A proof of property (RD) for cocompact lattices of \(\text{ SL } (3,{\bf R})\) and \(\text{ SL } (3,{\bf C})\). J. Lie Theory 10(2), 255–267 (2000)

    MathSciNet  MATH  Google Scholar 

  25. Lafforgue, V.: La conjecture de Baum–Connes à coefficients pour les groupes hyperboliques. J. Noncommut. Geom. 6(1), 1–197 (2012). https://doi.org/10.4171/JNCG/89. arXiv:1201.4653 [math.OA]

  26. Langer, M., Lück, W.: Topological \(K\)-theory of the group \(\text{ C }^*\)-algebra of a semi-direct product \(\mathbb{Z}^n\rtimes \mathbb{Z}/m\) for a free conjugation action. J. Topol. Anal. 4(2), 121–172 (2012). https://doi.org/10.1142/S1793525312500082

    Article  MathSciNet  MATH  Google Scholar 

  27. Loday, J.-L.: Cyclic Homology, Second, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301. Springer, Berlin (1998). ISBN=3-540-63074-0 (Appendix E by María O. Ronco, Chapter 13 by the author in collaboration with Teimuraz Pirashvili)

  28. Loday, J.-L., Quillen, D.: Cyclic homology and the Lie algebra homology of matrices. Comment. Math. Helv. 59(4), 569–591 (1984)

    MathSciNet  MATH  Google Scholar 

  29. Lück, W., Stamm, R.: Computations of \(K\)- and \(L\)-theory of cocompact planar groups. K Theory 21(3), 249–292 (2000). https://doi.org/10.1023/A:1026539221644

    Article  MathSciNet  MATH  Google Scholar 

  30. Lysënok, I.G.: Some algorithmic properties of hyperbolic groups. Izv. Akad. Nauk SSSR Ser. Mat. 53(4), 814–832 (1989). (912. translation in Math. USSR-Izv. 35 (1990), no. 1, 145–163)

    MathSciNet  MATH  Google Scholar 

  31. Mathai, V.: Heat kernels and the range of the trace on completions of twisted group algebras. The ubiquitous heat kernel. Contemp. Math. 398, 321–345 (2006). (Am. Math. Soc., Providence, RI. With an appendix by Indira Chatterji)

    Article  MATH  ADS  Google Scholar 

  32. Mitjagin, B.S.: Approximate dimension and bases in nuclear spaces. Uspehi Mat. Nauk 16(4), 63–132 (1961)

    MathSciNet  Google Scholar 

  33. Mitiagin, B., Rolewicz, S., Żelazko, W.: Entire functions in \(B_{0}\)-algebras. Studia Math. 21, 291–306 (1961/1962)

  34. Packer, J.A., Raeburn, I.: Twisted crossed products of \(\text{ C }^*\)-algebras. Math. Proc. Camb. Philos. Soc. 106(2), 293–311 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Paravicini, W.: The spectral radius in \(\cal{C}_0(X)\)-Banach algebras. J. Noncommut. Geom. 7(1), 135–147 (2013). https://doi.org/10.4171/JNCG/111

    Article  MathSciNet  MATH  Google Scholar 

  36. Phillips, N.C.: \(K\)-theory for Fréchet algebras. Int. J. Math. 2(1), 77–129 (1991). https://doi.org/10.1142/S0129167X91000077

    Article  MATH  Google Scholar 

  37. Pimsner, M., Voiculescu, D.: Imbedding the irrational rotation \(C^{\ast } \)-algebra into an AF-algebra. J. Oper. Theory 4(2), 201–210 (1980)

    MathSciNet  MATH  Google Scholar 

  38. Puschnigg, M.: New holomorphically closed subalgebras of \(\text{ C }^*\)-algebras of hyperbolic groups. Geom. Funct. Anal. 20(1), 243–259 (2010). https://doi.org/10.1007/s00039-010-0062-y

    Article  MathSciNet  MATH  Google Scholar 

  39. Quddus, S.: Cohomology of \(\cal{A}_\theta ^{\rm alg} \rtimes \mathbb{Z}_2\) and its Chern-Connes pairing. J. Noncommut. Geom. 11(3), 827–843 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Quddus, S.: Hochschild and cyclic homology of the crossed product of algebraic irrational rotational algebra by finite subgroups of \(SL(2,\mathbb{Z})\). J. Algebra 447, 322–366 (2016). https://doi.org/10.1016/j.jalgebra.2015.08.019

    Article  MathSciNet  MATH  Google Scholar 

  41. Rieffel, M.A.: Irrational rotation C\(^*\)-algebras, short communication. In: Presented at International Congress of Mathematicians, Helsinki (1978)

  42. Rinehart, G.S.: Differential forms on general commutative algebras. Trans. Am. Math. Soc. 108, 195–222 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sale, A.W.: The Length of Conjugators in Solvable Groups and Lattices of Semisimple Lie Groups. Ph.D. thesis. University of Oxford (2012)

  44. Sale, A.: Conjugacy length in group extensions. Commun. Algebra 44(2), 873–897 (2016). https://doi.org/10.1080/00927872.2014.990021

    Article  MathSciNet  MATH  Google Scholar 

  45. Schweitzer, L.B.: Dense \(m\)-convex Fréchet subalgebras of operator algebra crossed products by Lie groups. Int. J. Math. 4(4), 601–673 (1993). https://doi.org/10.1142/S0129167X93000315

    Article  MATH  Google Scholar 

  46. Schweitzer, L.B.: Spectral invariance of dense subalgebras of operator algebras. Int. J. Math. 4(2), 289–317 (1993). https://doi.org/10.1142/S0129167X93000157

    Article  MathSciNet  MATH  Google Scholar 

  47. Trèves, F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, New York (1967)

    MATH  Google Scholar 

  48. Tsygan, B.L.: Homology of matrix Lie algebras over rings and the Hochschild homology. Uspekhi Mat. Nauk 38(2), 217–218 (1983). (Translation in Russ. Math. Survey 38(2) (1983), 198–199)

    MathSciNet  MATH  Google Scholar 

  49. Tsygan, B.: Cyclic Homology, Cyclic Homology in Non-commutative Geometry, Encyclopaedia of Mathematical Sciences, vol. 121, pp. 73–113. Springer, Berlin (2004). (Operator Algebras and Non-commutative Geometry, II)

    Book  Google Scholar 

  50. Valette, A.: Introduction to the Baum–Connes Conjecture, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel (2002). ISBN=3-7643-6706-7, From notes taken by Indira Chatterji, With an appendix by Guido Mislin

  51. Walters, S.G.: Projective modules over the non-commutative sphere. J. Lond. Math. Soc. (2) 51(3), 589–602 (1995). https://doi.org/10.1112/jlms/51.3.589

    Article  MathSciNet  MATH  Google Scholar 

  52. Walters, S.G.: Chern characters of Fourier modules. Can. J. Math. 52(3), 633–672 (2000). https://doi.org/10.4153/CJM-2000-028-9

    Article  MathSciNet  MATH  Google Scholar 

  53. Yamashita, M.: Deformation of Algebras Associated to Group Cocycles (preprint, 2011). arXiv:1107.2512 [math.OA]

  54. Yamashita, M.: Monodromy of Gauss-Manin connection for deformation by group cocycles. J. Noncommut. Geom. 11(4), 1237–1265 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  55. Yashinski, A: Periodic Cyclic Homology and Smooth Deformations. Ph.D. thesis. The Pennsylvania State University (2013)

Download references

Acknowledgements

The authors would like to thank Wolfgang Lück and Ryszard Nest for fruitful comments. They also thank the following programs/Grants for their support which enabled collaboration for this paper: Simons - Foundation Grant 346300 and the Polish Government MNiSW 2015–2019 matching fund; The Isaac Newton Institute for Mathematical Sciences for the programme Operator algebras: subfactors and their applications. This work was supported by: EPSRC Grant Number EP/K032208/1 and DFG (SFB 878). M.Y. thanks the operator algebra group at University of Münster for their hospitality during his stay, and Yasu Kawahigashi for financial support (JSPS KAKENHI Grant Number 15H02056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Yamashita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Yamashita, M. Tracing cyclic homology pairings under twisting of graded algebras. Lett Math Phys 109, 1625–1664 (2019). https://doi.org/10.1007/s11005-018-01147-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-018-01147-7

Keywords

Mathematics Subject Classification

Navigation