Skip to main content
Log in

On the dipole approximation with error estimates

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The dipole approximation is employed to describe interactions between atoms and radiation. It essentially consists of neglecting the spatial variation of the external field over the atom. Heuristically, this is justified by arguing that the wavelength is considerably larger than the atomic length scale, which holds under usual experimental conditions. We prove the dipole approximation in the limit of infinite wavelengths compared to the atomic length scale and estimate the rate of convergence. Our results include N-body Coulomb potentials and experimentally relevant electromagnetic fields such as plane waves and laser pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bach, V., Fröhlich, J., Sigal, I.M.: Quantum electrodynamics of confined nonrelativistic particles. Adv. Math. 137, 2 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Costin, O., Lebowitz, J.L., Stucchio, C.: Ionization in a 1-dimensional dipole model. Rev. Math. Phys. 20, 7 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fröhlich, J., Pizzo, A., Schlein, B.: Ionization of atoms by intense laser pulses. Ann. Henri Poincaré 11, 7 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Glimm, J., Jaffe, A.: Singular perturbations of selfadjoint operators. Commun. Pure Appl. Math. 22, 3 (1969)

    Article  MathSciNet  Google Scholar 

  5. Graffi, S., Yajima, K.: Exterior complex scaling and the AC-Stark effect in a Coulomb field. Commun. Math. Phys. 89, 2 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Griesemer, M., Schmid, J.: Well-posedness of non-autonomous linear evolution equations in uniformly convex spaces. Math. Nachr. 290, 2–3 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Griesemer, M., Zenk, H.: On the atomic photoeffect in non-relativistic QED. Commun. Math. Phys. 300, 3 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huang, M.-J.: Commutators and invariant domains for Schrödinger propagators. Pac. J. Math. 175, 1 (1996)

    Article  MATH  Google Scholar 

  9. Kato, T.: Linear evolution equations of “hyperbolic” type. J. Fac. Sci. Univ. Tokyo Sect. I, 17 (1970)

    MathSciNet  Google Scholar 

  10. Møller, J.S.: Two-body short-range systems in a time-periodic electric field. Duke Math. J. 105, 1 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. Pauli, W., Fierz, M.: Zur theorie der emission langwelliger lichtquanten. Il Nuovo Cimento 15, 3 (1938)

    Article  MATH  Google Scholar 

  12. Radin, C., Simon, B.: Invariant domains for the time-dependent Schrödinger equation. J. Differ. Equ. 29, 2 (1978)

    Article  MATH  Google Scholar 

  13. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Vol. II: Fourier Analysis, Self-Adjointness. Academic Press, Cambridge (1975)

    MATH  Google Scholar 

  14. Yajima, K.: Resonance for the AC-Stark effect. Commun. Math. Phys. 87, 3 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yosida, K.: Functional Analysis. Springer, Berlin (1980)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank Detlef Dürr and Peter Pickl for many helpful discussions and the referees for their advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lea Boßmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boßmann, L., Grummt, R. & Kolb, M. On the dipole approximation with error estimates. Lett Math Phys 108, 185–193 (2018). https://doi.org/10.1007/s11005-017-0999-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-017-0999-y

Keywords

Mathematics Subject Classification

Navigation