Skip to main content
Log in

A q-boson representation of Zamolodchikov-Faddeev algebra for stochastic R matrix of \(\varvec{U_q(A^{(1)}_n)}\)

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct a q-boson representation of the Zamolodchikov-Faddeev algebra whose structure function is given by the stochastic R matrix of \(U_q(A^{(1)}_n)\) introduced recently. The representation involves quantum dilogarithm type infinite products in the \(n(n-1)/2\)-fold tensor product of q-bosons. It leads to a matrix product formula of the stationary probabilities in the \(U_q(A_n^{(1)})\)-zero range process on a one-dimensional periodic lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We write \(K_\alpha \) with \(\alpha =(\alpha _1,\ldots , \alpha _n)\) as \(K_{\alpha _1,\ldots , \alpha _n}\) rather than \(K_{(\alpha _1,\ldots , \alpha _n)}\) for simplicity. A similar convention will also be used for \(g_\alpha (\zeta ), X_\alpha (\zeta )\) and \(Z_\alpha (\zeta )\).

References

  1. Baxter, R.J.: Exactly solved models in statistical mechanics. Dover (2007)

  2. Borodin, A., Petrov, L.: Higher spin six vertex model and symmetric rational functions. arXiv:1601.05770

  3. Cantini, L., de Gier, J., Wheeler, M.: Matrix product formula for Macdonald polynomials. J. Phys. A Math. Theor. 48, 384001 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Corwin, I., Petrov, L.: Stochastic higher spin vertex models on the line. arXiv:1502.07374

  5. Crampe, N., Ragoucy, E., Vanicat, M.: Integrable approach to simple exclusion processes with boundaries. Review and progress. J. Stat. Mech. 1411, P11032 (2014)

  6. Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A Math. Gen. 26, 1493–1517 (1993)

    Article  ADS  MATH  Google Scholar 

  7. Drinfeld, V.G.: Quantum groups. In: Proceedings of the International Congress of Mathematicians, vol. 1, 2, pp. 798–820 (Berkeley, Calif., 1986), Am. Math. Soc., Providence, RI (1987)

  8. Evans, M.R., Hanney, T.: Nonequilibrium statistical mechanics of the zero-range process and related models. J. Phys. A: Math. Gen. 38, R195–R240 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Faddeev, L.D.: Quantum completely integrable models in field theory. In: Contemporary Mathematical Physics, vol. IC,pp. 107–155 (1980)

  10. Garbali, A., de Gier, J., Wheeler, M.: A new generalization of Macdonald polynomials. arXiv:1605.07200

  11. Jimbo, M.: A \(q\)-difference analogue of \(U({\mathfrak{g}})\) and the Yang-Baxter equation. Lett. Math. Phys. 10, 63–69 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Kuniba, A., Mangazeev, V.V., Maruyama, S., Okado, M.: Stochastic \(R\) matrix for \(U_q(A^{(1)}_n)\). Nucl. Phys. B 913, 248–277 (2016)

    Article  ADS  MATH  Google Scholar 

  13. Kuniba, A., Maruyama, S., Okado, M.: Multispecies totally asymmetric zero range process: I. Multiline process and combinatorial \(R\). J. Integrable Syst. 1(1), xyw002 (2016)

  14. Kuniba, A., Maruyama, S., Okado, M.: Multispecies totally asymmetric zero range process: II. Hat relation and tetrahedron equation. J. Integrable Syst. 1(1), xyw008 (2016)

  15. Kuniba, A., Maruyama, S., Okado, M.: Inhomogeneous generalization of a multispecies totally asymmetric zero range process. J. Stat. Phys. 164, 952–968 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Kuniba, A., Okado, M.: Matrix product formula for \(U_q(A^{(1)}_2)\)-zero range process. J. Phys. A: Math. Theor. arXiv:1608.02779 (to appear)

  17. Mangazeev, V.: On the Yang-Baxter equation for the six-vertex model. Nucl. Phys. B 882, 70–96 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Prolhac, S., Evans, M.R., Mallick, K.: Matrix product solution of the multispecies partially asymmetric exclusion process. J. Phys. A: Math. Theor. 42, 165004, 25 (2009)

  19. Povolotsky, A.M.: On the integrability of zero-range chipping models with factorized steady states. J. Phys. A: Math. Theor. 46, 465205, 25 (2013)

  20. Sasamoto, T., Wadati, M.: Exact results for one-dimensional totally asymmetric diffusion models. J. Phys. A: Math. Gen. 31, 6057–6071 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Takeyama, Y.: A deformation of affine Hecke algebra and integrable stochastic particle system. J. Phys. A: Math. Theor. 47, 465203, 19 (2014)

  22. Takeyama, Y.: Algebraic construction of multi-species \(q\)-Boson system. arXiv:1507.02033

  23. Zamolodchikov, A.B., Zamolodchikov, AI. B.: Two-dimensional factorizable S-matrices as exact solutions of some quantum field theory models. Ann. Phys. 120, 253–291 (1979)

Download references

Acknowledgements

This work is supported by Grants-in-Aid for Scientific Research No. 15K04892, No. 15K13429 and No. 16H03922 from JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Okado.

Appendix A: Proof of Theorem 1

Appendix A: Proof of Theorem 1

We will use the same symbol \(\varphi (\beta ,\gamma )\) (3) to mean (3)\(|_{n \rightarrow n+1}\). Moreover, \(\sum _{1\le i < j \le n+1}\beta _i \gamma _j\) with \(\beta \in {\mathbb Z}_{\ge 0}^n, \gamma \in {\mathbb Z}_{\ge 0}^{n+1}\) will also be denoted by \(\varphi (\beta ,\gamma )\).

We are going to prove Theorem 1 by induction on n. The relation (15)\(|_{n=1}\) is valid since it is equivalent to (9)\(|_{n=1}\). (The case \(n=2\) has been shown in [16] by a method different from here.) Thus, our task in the sequel is to show (15)\(|_{n\rightarrow n+1}\) assuming (15)\(|_{n=n}\).

Lemma 7

Under the assumption (15) \(|_{n=n}\), the relation (15) \(|_{n\rightarrow n+1}\) follows from the equality

$$\begin{aligned}&\sum \limits _{m \le s}q^{\varphi (m,\alpha )}\Phi ^{(n)}_q(m|s; \lambda , \mu ) \bigotimes \limits _{i=1}^n\mathbf{b}^{s_i-m_i}\mathbf{c}^{\alpha _i}\mathbf{b}^{m_i}\nonumber \\&\quad = \sum \limits _{\gamma \le \alpha }q^{\varphi (\gamma ,\alpha )+ \varphi (s,\gamma )-\varphi (\alpha ,\gamma )} \Phi ^{(n+1)}_q(\gamma |\alpha , \lambda , \mu )\bigotimes \limits _{i=1}^n \mathbf{c}^{\gamma _i}\mathbf{b}^{s_i}\mathbf{c}^{\alpha _i-\gamma _i}\; (\forall s \in {\mathbb Z}_{\ge 0}^n, \forall \alpha \in {\mathbb Z}_{\ge 0}^{n+1}). \end{aligned}$$
(39)

Proof

Substitute (19)\(|_{n \rightarrow n+1}\) into (15)\(|_{n\rightarrow n+1}\). Applying (13) on the LHS, we get

$$\begin{aligned} \text {LHS}&= \sum _{m,l \in {\mathbb Z}_{\ge 0}^n}\sum _{t \le m} \Phi ^{(n)}_q(l|m+l-t;\lambda ,\mu ) X_t(\lambda )X_{m+l-t}(\mu )\\&\quad \otimes \bigotimes _{i=1}^n(m_i,\alpha ^+_i,\alpha _i)(l_i, \beta ^+_i, \beta _i),\\ \text {RHS}&= \sum _{\gamma \le \alpha } q^{\varphi (\alpha -\gamma ,\beta -\gamma )} \Phi ^{(n+1)}_q(\gamma |\alpha , \lambda , \mu ) \sum _{t,s \in {\mathbb Z}_{\ge 0}^n} X_t(\lambda )X_s(\mu ) \otimes \bigotimes _{i=1}^n (t_i, \gamma ^+_i, \gamma _i)\\&\quad \times (s_i, \alpha ^+_i+\beta ^+_i-\gamma ^+_i, \alpha _i+\beta _i-\gamma _i), \end{aligned}$$

where the temporal notation \((i,j,k) := \mathbf{b}^i \mathbf{k}^j \mathbf{c}^k\) is used. The symbol \(\alpha ^+_i\) is defined by (17)\(|_{n \rightarrow n+1}\) and \(\beta ^+_i, \gamma ^+_i\) are similar. Thus, to prove \(\text {LHS}=\text {RHS}\), it is sufficient, though not a priori necessary, to show that the coefficients of \(X_t(\lambda )X_s(\mu )\) are equal for each choice of \(t,s \in {\mathbb Z}_{\ge 0}^n\) and \(\alpha , \beta \in {\mathbb Z}_{\ge 0}^{n+1}\). Explicitly, it reads

$$\begin{aligned} \begin{array}{ll} &{}\sum \limits _{t \le m \le t+s}\Phi ^{(n)}_q(t+s-m|s; \lambda , \mu ) \bigotimes \limits _{i=1}^n(m_i,\alpha ^+_i,\alpha _i)(t_i+s_i-m_i, \beta ^+_i, \beta _i)\\ &{} \qquad =\sum \limits _{\gamma \le \alpha }q^{\varphi (\alpha -\gamma ,\beta -\gamma )} \Phi ^{(n+1)}_q(\gamma |\alpha , \lambda , \mu ) \bigotimes \limits _{i=1}^n (t_i, \gamma ^+_i, \gamma _i) \\ &{} \quad \qquad \times (s_i, \alpha ^+_i+\beta ^+_i-\gamma ^+_i, \alpha _i+\beta _i-\gamma _i). \end{array} \end{aligned}$$

One can pull out the common factor \(\bigotimes _{i=1}^n\mathbf{k}^{\alpha ^+_i+\beta ^+_i}\) from this equality to the left. The result reads

$$\begin{aligned} \begin{array}{ll} &{}\sum \limits _{t \le m \le t+s}q^{\varphi (t+s-m,\alpha )} \Phi ^{(n)}_q(t+s-m|s; \lambda , \mu ) \bigotimes \limits _{i=1}^n(m_i,0,\alpha _i)(t_i+s_i-m_i,0, \beta _i)\\ &{}\qquad = \sum \limits _{\gamma \le \alpha }q^{\varphi (\gamma ,\alpha )+ \varphi (s,\gamma )-\varphi (\alpha ,\gamma )} \Phi ^{(n+1)}_q(\gamma |\alpha , \lambda , \mu ) \bigotimes \limits _{i=1}^n (t_i, 0, \gamma _i)(s_i, 0, \alpha _i+\beta _i-\gamma _i). \end{array} \end{aligned}$$

Note that this further contains a common rightmost factor \(\bigotimes _{i=1}^n \mathbf{c}^{\beta _i}\) and a common leftmost factor \(\bigotimes _{i=1}^n\mathbf{b}^{t_i}\). Removing them leads to (39).\(\square \)

Lemma 8

The following identities hold:

$$\begin{aligned} \mathbf{c}^m\mathbf{b}^s&= \sum _{j=0}^s q^{j(m-s+j)}(q^m;q^{-1})_{s-j}\left( {\begin{array}{c}s\\ j\end{array}}\right) _{q} \mathbf{b}^j\mathbf{c}^{m-s+j} \qquad (m,s \in {\mathbb Z}_{\ge 0}), \end{aligned}$$
(40)
$$\begin{aligned} z^s&=\sum _{r=0}^s (-1)^r q^{r(r-1)/2}\left( {\begin{array}{c}s\\ r\end{array}}\right) _{q}(z;q^{-1})_r \qquad (s \in {\mathbb Z}_{\ge 0}). \end{aligned}$$
(41)

Proof

These relations can easily be checked by means of the q-binomial theorem.\(\square \)

Lemma 9

The equality (39) is equivalent to

$$\begin{aligned}&\sum _{m \le s} q^{\varphi (m,\alpha )+ \sum _{i=1}^n\alpha _im_i} \Phi ^{(n)}_q(m|s;\lambda ,\mu ) \nonumber \\&\qquad = \sum _{\gamma \le \alpha } q^{\varphi (\gamma ,\alpha )+\varphi (s,\gamma )- \varphi (\alpha ,\gamma )+\sum _{i=1}^ns_i\gamma _i} \Phi ^{(n+1)}_q(\gamma |\alpha ;\lambda ,\mu ) \end{aligned}$$
(42)

for any \(s \in {\mathbb Z}_{\ge 0}^n\) and \(\alpha \in {\mathbb Z}_{\ge 0}^{n+1}\).

Proof

Comparing the coefficient of the basis vector \(\bigotimes _{i=1}^n\mathbf{b}^{s_i-p_i}\mathbf{c}^{\alpha _i-p_i}\) of \(\mathcal {B}^{\otimes n}\) on the both sides of (39) by means of (40), it is translated into the equality of the coefficients

$$\begin{aligned}&\sum _{m \le s}q^{\varphi (m,\alpha )} \Phi ^{(n)}_q(m|s;\lambda ,\mu ) \prod _{i=1}^n q^{(m_i-p_i)(\alpha _i-p_i)} \left( {\begin{array}{c}\alpha _i\\ p_i\end{array}}\right) _{q}\left( {\begin{array}{c}m_i\\ p_i\end{array}}\right) _{q}\nonumber \\&\qquad = \sum _{\gamma \le \alpha }q^{\varphi (\gamma ,\alpha ) +\varphi (s^{\vee }-\alpha ,\gamma )} \Phi ^{(n+1)}_q(\gamma |\alpha ;\lambda ,\mu ) \prod _{i=1}^n q^{(\gamma _i-p_i)(s_i-p_i)} \left( {\begin{array}{c}s_i\\ p_i\end{array}}\right) _{q}\left( {\begin{array}{c}\gamma _i\\ p_i\end{array}}\right) _{q} \end{aligned}$$
(43)

for any arrays of nonnegative integers \(\alpha =(\alpha _1, \ldots , \alpha _n,\alpha _{n+1}), s=(s_1,\ldots , s_n), p=(p_1,\ldots , p_n)\) such that \(p_i \le \min (s_i,\alpha _i)\) for all \(1 \le i \le n\). On the RHS of (43), we have introduced the notation

$$\begin{aligned} s^{\vee } = (s_1,\ldots , s_n,0) \end{aligned}$$
(44)

for later convenience. Of course \(\varphi (s^{\vee },\gamma ) = \varphi (s,\gamma )\) by the definition. By substituting (3) into (43) and removing a common overall factor from the both sides, it becomes

$$\begin{aligned} \begin{array}{ll} &{}\sum \limits _{p \le m \le s}q^{\varphi (m,\alpha -m^{\vee })+\varphi (s,m)} \nu ^{|m|}\frac{(\lambda )_{|m|}(\nu )_{|s|-|m|}}{(\mu )_{|s|}} \prod \limits _{i=1}^n q^{(m_i-p_i)(\alpha _i-p_i)}\left( {\begin{array}{c}s_i-p_i\\ m_i-p_i\end{array}}\right) _{q}\\ &{} \qquad = \sum \limits _{p^{\vee } \le \gamma \le \alpha }q^{ \varphi (\gamma ,\alpha -\gamma )+\varphi (s, \gamma )} \nu ^{|\gamma |}\frac{(\lambda )_{|\gamma |}(\nu )_{|\alpha |-|\gamma |}}{(\mu )_{|\alpha |}}\left( {\begin{array}{c}\alpha _{n+1}\\ \gamma _{n+1}\end{array}}\right) _{q} \prod \limits _{i=1}^n q^{(s_i-p_i)(\gamma _i-p_i)}\left( {\begin{array}{c}\alpha _i-p_i\\ \gamma _i-p_i\end{array}}\right) _{q}, \end{array} \end{aligned}$$

where \(\nu = \mu /\lambda \) and \(m^{\vee }, p^{\vee }\) are defined similar to (44). By the replacement

$$\begin{aligned}&s \rightarrow s+p,\;\; m \rightarrow m+p,\;\; \alpha \rightarrow \alpha +p^{\vee },\;\; \gamma \rightarrow \gamma +p^{\vee },\\&\quad \lambda \rightarrow q^{-|p|}\lambda ,\;\; \mu \rightarrow q^{-|p|}\mu , \end{aligned}$$

the above relation is cast into

$$\begin{aligned}&\sum \limits _{m \le s}q^{\varphi (m,\alpha )+\varphi (s-m,m)+\sum _{i=1}^n\alpha _im_i} \nu ^{|m|}\frac{(\lambda )_{|m|}(\nu )_{|s|-|m|}}{(\mu )_{|s|}} \prod \limits _{i=1}^n\left( {\begin{array}{c}s_i\\ m_i\end{array}}\right) _{q}\nonumber \\&\qquad =\sum \limits _{\gamma \le \alpha } q^{\varphi (\gamma ,\alpha ) +\varphi (s^{\vee }-\gamma ,\gamma )+\sum _{i=1}^ns_i\gamma _i} \nu ^{|\gamma |}\frac{(\lambda )_{|\gamma |} (\nu )_{|\alpha |-|\gamma |}}{(\mu )_{|\alpha |}} \prod \limits _{i=1}^{n+1}\left( {\begin{array}{c}\alpha _i\\ \gamma _i\end{array}}\right) _{q}, \end{aligned}$$
(45)

which turns out to be free from \(p=(p_1,\ldots , p_n)\). This coincides with (42).\(\square \)

So far we have shown that Theorem 1 is a corollary of (42). Let us proceed to a proof of the latter.

Lemma 10

The equality (42) holds for \(n \in {\mathbb Z}_{\ge 0}\).

Proof

Again we invoke the induction on n. At \(n=0\), (42) reads \(1= \sum _{\gamma _1 \le \alpha _1} \Phi ^{(1)}_q(\gamma _1|\alpha _1;\lambda , \mu )\), which is indeed valid thanks to (9). Assume (42)\(|_{n\rightarrow n-1}\). Applying (11) to the LHS of (42)\(|_{n=n}\), we get

$$\begin{aligned} \text {LHS} = \sum _{m_1 \le s_1} q^{m_1|\alpha |}\Phi ^{(1)}_q(m_1|s_1;\lambda , \mu ) \sum _{\overline{m} \le \overline{s}} q^{\varphi (\overline{m},\overline{\alpha }) + \sum _{i=2}^n m_i\alpha _i} \Phi ^{(n-1)}_q(\overline{m}|\overline{s}; q^{m_1}\lambda , q^{s_1}\mu ), \end{aligned}$$

where \(\overline{m}, \overline{s} \in {\mathbb Z}_{\ge 0}^{n-1}\) and \(\overline{\alpha } \in {\mathbb Z}_{\ge 0}^n\) are defined by (10). Rewriting the sum over \(\overline{m}\) by the induction assumption (42)\(|_{n\rightarrow n-1}\) yields (\(\nu =\mu /\lambda \) as before)

$$\begin{aligned} \text {LHS}&= \sum _{m_1 \le s_1} q^{m_1|\alpha |}\Phi ^{(1)}_q(m_1|s_1;\lambda , \mu ) \nonumber \\&\quad \times \sum _{\overline{\gamma } \le \overline{\alpha }} q^{\varphi (\overline{\gamma },\overline{\alpha }) +\varphi (\overline{s},\overline{\gamma }) -\varphi (\overline{\alpha },\overline{\gamma })+\sum _{i=2}^ns_i\gamma _i} \Phi ^{(n)}_q(\overline{\gamma }|\overline{\alpha }; q^{m_1}\lambda , q^{s_1}\mu ) \nonumber \\&=\sum _{m_1\le s_1}q^{m_1(|\alpha |-|\overline{\gamma }|)} \nu ^{m_1}\left( {\begin{array}{c}s_1\\ m_1\end{array}}\right) _{q}\;\, \nonumber \\&\quad \times \sum _{\overline{\gamma } \le \overline{\alpha }} q^{\xi (s,\overline{\alpha }, \overline{\gamma })} \nu ^{|\overline{\gamma }|} \frac{(\lambda )_{m_1+|\overline{\gamma }|} (\nu )_{m_1-s_1+|\overline{\alpha }|-|\overline{\gamma }|}}{(\mu )_{s_1+|\overline{\alpha }|}} \prod _{i=2}^{n+1}\left( {\begin{array}{c}\alpha _i\\ \gamma _i\end{array}}\right) _{q}, \end{aligned}$$
(46)

where \(\xi (s,\overline{\alpha }, \overline{\gamma }) =\varphi (\overline{\gamma }, \overline{\alpha })+\varphi (\overline{s},\overline{\gamma }) +\sum _{i=2}^ns_i\gamma _i -\varphi (\overline{\gamma },\overline{\gamma })+ s_1|\overline{\gamma }|\). On the other hand, the RHS of (42) has been written out in the RHS of (45), which is expressed using the above \(\xi (s,\overline{\alpha }, \overline{\gamma })\) as

$$\begin{aligned} \text {RHS} = \sum _{\gamma _1 \le \alpha _1, \overline{\gamma } \le \overline{\alpha }} q^{\gamma _1(|\overline{\alpha }|-|\overline{\gamma }|+s_1)+ \xi (s,\overline{\alpha }, \overline{\gamma })} \nu ^{|\gamma |} \frac{(\lambda )_{|\gamma |} (\nu )_{|\alpha |-|\gamma |}}{(\mu )_{|\alpha |}} \prod _{i=1}^{n+1}\left( {\begin{array}{c}\alpha _i\\ \gamma _i\end{array}}\right) _{q}. \end{aligned}$$
(47)

Denote the summand in (46) by \(\text {LHS}(m_1,\gamma _2,\ldots , \gamma _{n+1})\) and the one in (47) by \(\text {RHS}(\gamma _1,\gamma _2,\ldots , \gamma _{n+1})\). We claim \(\sum _{m_1\le s_1} \text {LHS}(m_1,\gamma _2,\ldots , \gamma _{n+1}) = \sum _{\gamma _1 \le \alpha _1} \text {RHS}(\gamma _1,\gamma _2,\ldots , \gamma _{n+1})\) holds for each fixed \(\overline{\gamma } = (\gamma _2,\ldots , \gamma _{n+1})\). In fact, the two sides possess a common overall factor \(q^{\xi (s,\overline{\alpha }, \overline{\gamma })} \nu ^{|\overline{\gamma }|} \frac{(\lambda )_{|\overline{\gamma }|} (\nu )_{|\overline{\alpha }|-|\overline{\gamma }|}}{(\mu )_{|\overline{\alpha }|}} \prod _{i=2}^{n+1}\left( {\begin{array}{c}\alpha _i\\ \gamma _i\end{array}}\right) _{q}\). By removing it, the claim becomes

$$\begin{aligned}&\sum _{m_1\le s_1} q^{m_1(|\alpha |-|\overline{\gamma }|)}\nu ^{m_1} \frac{(q^{|\overline{\gamma }|}\lambda )_{m_1} (q^{|\overline{\alpha }|-|\overline{\gamma }|}\nu )_{m_1-s_1}}{(q^{|\overline{\alpha }|}\mu )_{s_1}} \left( {\begin{array}{c}s_1\\ m_1\end{array}}\right) _{q}\\&\qquad =\sum _{\gamma _1 \le \alpha _1} q^{\gamma _1(|\overline{\alpha }|-|\overline{\gamma }|+s_1)} \nu ^{\gamma _1} \frac{(q^{|\overline{\gamma }|}\lambda )_{\gamma _1} (q^{|\overline{\alpha }|-|\overline{\gamma }|}\nu )_{\alpha _1-\gamma _1}}{(q^{|\overline{\alpha }|}\mu )_{\alpha _1}} \left( {\begin{array}{c}\alpha _1\\ \gamma _1\end{array}}\right) _{q}. \end{aligned}$$

This is simply stated as \(f(\alpha _1, s_1; q^{|\overline{\gamma }|}\lambda , q^{|\overline{\alpha }|}\mu ) = f(s_1, \alpha _1; q^{|\overline{\gamma }|}\lambda , q^{|\overline{\alpha }|}\mu )\) in terms of the function defined for \(s,t \in {\mathbb Z}_{\ge 0}\) and \(\nu =\mu /\lambda \) by

$$\begin{aligned} f(s,t;\lambda ,\mu ) = \sum _{i=0}^t q^{si} \nu ^i \frac{(\lambda )_i(\nu )_{t-i}}{(\mu )_t}\left( {\begin{array}{c}t\\ i\end{array}}\right) _{q}. \end{aligned}$$
(48)

This is verified in Lemma 11.\(\square \)

Lemma 11

The function (48) enjoys the symmetry \(f(s,t;\lambda ,\mu ) = f(t,s;\lambda ,\mu )\) for \(s,t \in {\mathbb Z}_{\ge 0}\).

Proof

By applying (41) to the factor \(q^{si}\) in (48), \(f(s,t;\lambda , \mu )\) is rewritten as follows:

$$\begin{aligned} f(s,t;\lambda , \mu )&= \sum _{i=0}^t \nu ^i \frac{(\lambda )_i(\nu )_{t-i}}{(\mu )_t}\left( {\begin{array}{c}t\\ i\end{array}}\right) _{q} \sum _{r=0}^s(-1)^rq^{r(r-1)/2}\left( {\begin{array}{c}s\\ r\end{array}}\right) _{q}(q^i;q^{-1})_r\\&=\sum _{r=0}^{\min (s,t)}\sum _{i=r}^t \nu ^i \frac{(\lambda )_r(q^r\lambda )_{i-r}(\nu )_{t-i}}{(\mu )_r(q^r\mu )_{t-r}} (q^t;q^{-1})_r\left( {\begin{array}{c}t-r\\ i-r\end{array}}\right) _{q} (-1)^rq^{r(r-1)/2}\left( {\begin{array}{c}s\\ r\end{array}}\right) _{q}. \end{aligned}$$

Replacing i by \(i+r\), we have

$$\begin{aligned} f(s,t;\lambda , \mu )&= \sum _{r=0}^{\min (s,t)} \nu ^r(-1)^rq^{r(r-1)/2}(q)_r\left( {\begin{array}{c}s\\ r\end{array}}\right) _{q}\left( {\begin{array}{c}t\\ r\end{array}}\right) _{q} \frac{(\lambda )_r}{(\mu )_r}h(r,t;\lambda , \mu ), \nonumber \\ h(r,t;\lambda , \mu )&= \sum _{i=0}^{t-r} \nu ^i \frac{(q^r\lambda )_{i}(\nu )_{t-r-i}}{(q^r\mu )_{t-r}}\left( {\begin{array}{c}t-r\\ i\end{array}}\right) _{q}. \end{aligned}$$
(49)

From \(\sum _{i=0}^{t-r} \Phi ^{(1)}_q(i|t-r;q^r\lambda , q^r\mu )=1\) (9), we find \(h(r,t;\lambda , \mu )=1\). Then the expression (49) tells that \(f(s,t;\lambda , \mu )=f(t,s;\lambda , \mu )\).\(\square \)

Proof of Theorem 1

As a summary of the arguments so far, the induction step from (15)\(|_{n=n}\) to (15)\(|_{n=n+1}\) has been established by the following scheme:

Since (15)\(|_{n=1}\) is valid as explained in the beginning of the appendix, the ZF relation (15) holds for any n. This completes the proof of Theorem 1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuniba, A., Okado, M. A q-boson representation of Zamolodchikov-Faddeev algebra for stochastic R matrix of \(\varvec{U_q(A^{(1)}_n)}\) . Lett Math Phys 107, 1111–1130 (2017). https://doi.org/10.1007/s11005-016-0934-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-016-0934-7

Keywords

Mathematics Subject Classification

Navigation