Skip to main content
Log in

Darboux Transformation for the Vector Sine-Gordon Equation and Integrable Equations on a Sphere

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose a method for construction of Darboux transformations, which is a new development of the dressing method for Lax operators invariant under a reduction group. We apply the method to the vector sine-Gordon equation and derive its Bäcklund transformations. We show that there is a new Lax operator canonically associated with our Darboux transformation resulting an evolutionary differential-difference system on a sphere. The latter is a generalised symmetry for the chain of Bäcklund transformations. Using the re-factorisation approach and the Bianchi permutability of the Darboux transformations, we derive new vector Yang–Baxter map and integrable discrete vector sine-Gordon equation on a sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matveev J.P., Salle M.A.: Darboux transformations and solitons. Springer series in nonlinear dynamics, vol. 4. Springer-Verlag, Berlin (1991)

    Book  MATH  Google Scholar 

  2. Rogers, C.; Schief, W.K.: Bäcklund and Darboux transformations. Cambridge Texts in Applied Mathematics, Geometry and modern applications in soliton theory. Cambridge University Press, Cambridge (2002)

  3. Bobenko, A.I., Suris, Yu.B.: Integrable systems on quad-graphs. Int. Math. Res. Not. 11:573–611

  4. Khanizadeh F., Mikhailov A.V., Wang J.P.: Darboux transformations and recursion operators for differential-difference equations. Theor. Math. Phys. 177(3), 1606–1654 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mikhailov A.V.: Integrability of a two-dimensional generalization of the Toda chain. JETP Lett. 30(7), 414–418 (1979)

    ADS  Google Scholar 

  6. Mikhailov A.V.: Reduction in integrable systems. The reduction group. JETP Lett. 32(2), 187–192 (1980)

    Google Scholar 

  7. Mikhailov A.V.: The reduction problem and the inverse scattering method. Phys. D. 3(1&2), 73–117 (1981)

    Article  MATH  Google Scholar 

  8. Konstantinou-Rizos S., Mikhailov A.V., Xenitidis P.: Reduction groups and related integrable difference systems of nonlinear Schrödinger type. J. Math. Phys. 56(8), 082701 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Konstantinou-Rizos S., Mikhailov A.V.: Darboux transformations, finite reduction groups and related Yang-Baxter maps. J. Phys. A Math. Theor. 46(42), 425201 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Mikhailov, A.V., Papamikos, G., Wang, J.P.: Darboux transformation with dihedral reduction group. J. Math. Phys. 55(11), 113507 (2014). arXiv:1402.5660

  11. Pohlmeyer K., Rehren K.H.: Reduction of the two-dimensional O(n) nonlinear \({\sigma }\)-model. J. Math. Phys. 20(12), 2628–2632 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  12. Zakharov V.E., Mikhailov A.V.: Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method. Zh. Èksper. Teoret. Fiz. 74(6), 1953–1973 (1978)

    MathSciNet  Google Scholar 

  13. Eichenherr H., Pohlmeyer K.: Lax pairs for certain generalizations of the sine-Gordon equation. Phys. Lett. B. 89(1), 76–78 (1979)

    Article  ADS  Google Scholar 

  14. Bakas I., Park Q.-H., Shin H.-J.: Lagrangian formulation of symmetric space sine-Gordon models. Phys. Lett. B. 372(12), 45–52 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Wang, J.P.: Generalized Hasimoto transformation and vector Sine-Gordon equation. In: Abenda, S., Gaeta, G., Walcher, S. (eds.) SPT 2002: symmetry and perturbation theory (Cala Gonone). World Sci. Publ, River Edge (2003)

  16. Mikhailov, A.V., Papamikos, G., Wang, J.P.: Dressing method for the vector sine-Gordon equation and its soliton interactions. Phys. D Nonlinear Phenom. 325:53–62 (2016). arXiv:1506.01878

  17. Budagov A.S., Takhtajan L.A.: A nonlinear one-dimensional model of classical field theory with internal degrees of freedom. Dokl. Akad. Nauk SSSR. 235(4), 805–808 (1977)

    MathSciNet  Google Scholar 

  18. Budagov A.S.: Completely integrable model of classical field theory with nontrivial particle interaction in two-dimensional space-time. In questions of quantum field theory and statistical physics. Zap. Nauchn. Sem. LOMI. 77, 24–56 (1978)

    MathSciNet  MATH  Google Scholar 

  19. Park Q.-H., Shin H.J.: Darboux transformation and Crums formula for multi-component integrable equations. Phys. D Nonlinear Phenom. 157, 1–15 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Adler V.E.: Classification of integrable Volterra-type lattices on the sphere: isotropic case. J. Phys. A Math. Theor. 41(14), 145201 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Tsuchida, T.: Integrable discretizations of the vector/matrix nonlinear Schrödinger equations and the associated Yang-Baxter map. (2015). arXiv:1505.07924

  22. Ragnisco O., Santini P.M.: A unified algebraic approach to integral and discrete evolution equations. Inverse Probl. 6(3), 441 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Bobenko A.I., Suris Yu.B.: Discrete time lagrangian mechanics on lie groups, with an application to the lagrange top. Commun. Math. Phys. 204, 147–188 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Drinfel’d, V.G., Sokolov, V.V.: Lie algebras and equations of Korteweg–de Vries type. In: Current problems in mathematics, vol. 24, Itogi Nauki i Tekhniki, pp. 81–180. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow (1984)

  25. Mikhailov, A.V.: Formal diagonalisation of the Lax-Darboux scheme and conservation laws of integrable partial differential, differential-difference and partial difference. http://www.newton.ac.uk/programmes/DIS/seminars/2013071114001.html. http://www.mathnet.ru/php/presentation.phtml?option_lang=eng&presentid=5934

  26. Adler V.E., Postnikov V.V.: On vector analogs of the modified volterra lattice. J. Phys. A Math. Theor. 41(45), 455203 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Adler V.E., Svinolupov S.I., Yamilov R.I.: Multi-component Volterra and Toda type integrable equations. Phys. Lett. A. 254(1–2), 24–36 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Wang J.P.: Representations of \({{\mathfrak{sl}}(2,{\mathbb{C}})}\) in category \({{\mathcal{O}}}\) and master symmetries. Theor. Math. Phys. 184(2), 1078–1105 (2015)

    Article  MATH  Google Scholar 

  29. Nijhoff F., Capel H.: The discrete Korteweg-de Vries equation. Acta Appl. Math. 39(1–3), 133–158 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Suris Yu.B., Veselov A.P.: Lax matrices for Yang-Baxter maps. J. Nonlinear Math. Phys. 10, 223–230 (2003)

    Article  MathSciNet  Google Scholar 

  31. Kouloukas T., Papageorgiou V.: Poisson Yang-Baxter maps with binomial Lax matrices. J. Math. Phys. 52(12), 404012 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Goncharenko, V.M., Veselov, A.P.: Yang-baxter maps and matrix solitons. In: Shabat, A.B., González-López, A., Mañas, M., Martnez Alonso, L., Rodriguez, M.A. (eds.) New trends in integrability and partial solvability, NATO Science Series, vol. 132, pp. 191–197. Springer Netherlands (2004)

  33. Mikhailov, A.V., Wang, J.P., Xenitidis, P.: Recursion operators, conservation laws and integrability conditions for difference equations. Theor. Math. Phys. 167, 421–443 (2011). arXiv:1004.5346

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, A.V., Papamikos, G. & Wang, J.P. Darboux Transformation for the Vector Sine-Gordon Equation and Integrable Equations on a Sphere. Lett Math Phys 106, 973–996 (2016). https://doi.org/10.1007/s11005-016-0855-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-016-0855-5

Mathematics Subject Classification

Keywords

Navigation