Skip to main content
Log in

Algebraic Lattices in QFT Renormalization

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argyres E.N., van Hameren A.F.W., Kleiss R.H.P., Papadopoulos C.G.: Zero-dimensional field theory. Eur. Phys. J. C-Particl. Fields 19(3), 567–582 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Bender C.M., Wy T.T.: Statistical analysis of Feynman diagrams. Phys. Rev. Lett. 37(3), 117 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bergeron N., Sottile F.: Hopf algebras and edge-labeled posets. J. Algebra 216(2), 641–651 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berghoff, M.: Wonderful compactifications in quantum field theory. arXiv preprint (2014). arXiv:1411.5583 [hep-th]

  5. Bessis D., Itzykson C., Zuber J.-B.: Quantum field theory techniques in graphical enumeration. Adv. Appl. Math. 1(2), 109–157 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borinsky M.: Feynman graph generation and calculations in the Hopf algebra of Feynman graphs. Comput. Phys. Commun. 185(12), 3317–3330 (2014)

    Article  ADS  Google Scholar 

  7. Borinsky, M.: Asymptotic enumeration of Feynman diagrams (2015). (In preparation)

  8. Brown F., Kreimer D.: Angles, scales and parametric renormalization. Lett. Math. Phys. 103(9), 933–1007 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Connes A., Kreimer D.: Renormalization in quantum field theory and the Riemann–Hilbert problem i: The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210(1), 249–273 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Connes A., Kreimer D.: Renormalization in quantum field theory and the Riemann–Hilbert Problem ii: The β-function, diffeomorphisms and the renormalization group. Commun. Math. Phys. 216(1), 215–241 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Cvitanović P., Lautrup B., Pearson R.B.: Number and weights of Feynman diagrams. Phys. Rev. D 18(6), 1939 (1978)

    Article  ADS  Google Scholar 

  12. Dyson F.J.: Divergence of perturbation theory in quantum electrodynamics. Phys. Rev. 85(4), 631 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Ehrenborg R.: On posets and Hopf algebras. Adv. Math. 119(1), 1–25 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Figueroa H., Gracia-Bondia J.M.: Combinatorial Hopf algebras in quantum field theory i. Rev. Math. Phys. 17(08), 881–976 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gurau, R., Rivasseau, V., Sfondrini, A.: Renormalization: an advanced overview. arXiv:1401.5003 (2014)

  16. Hurst, C.A.: The enumeration of graphs in the Feynman–Dyson technique. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 214, pp. 44–61. The Royal Society, New York (1952)

  17. Joni S.A., Rota G.-C.: Coalgebras and bialgebras in combinatorics. Stud. Appl. Math. 61(2), 93–139 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kontsevich M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147(1), 1–23 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Kreimer D.: Anatomy of a gauge theory. Ann. Phys. 321(12), 2757–2781 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Krüger, O., Kreimer, D.: Filtrations in Dyson–Schwinger equations: next-to j-leading log expansions systematically. Ann. Phys. (2015)

  21. Lando, S.K., Zvonkin, A.K.: Graphs on Surfaces and their Applications, vol. 141. Springer Science & Business Media, Berlin (2013)

  22. Lautrup B.: On high order estimates in QED. Phys. Lett. B 69(1), 109–111 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  23. Manchon, D.: Hopf algebras, from basics to applications to renormalization (2004). arXiv:math/0408405 [hep-th]

  24. Schmitt W.R.: Incidence Hopf algebras. J. Pure Appl. Algebra 96(3), 299–330 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stanley, RP.: Enumerative combinatorics. In: Cambridge Studies in Advanced Mathematics, vol. 49. Cambridge University Press, Cambridge (1997)

  26. Stern, M.: Semimodular lattices: theory and applications. In: Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1999)

  27. Weinberg S.: High-energy behavior in quantum field theory. Phys. Rev. 118, 838–849 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Yeats, K.: Growth estimates for Dyson–Schwinger equations. PhD thesis, Boston University (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Borinsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borinsky, M. Algebraic Lattices in QFT Renormalization. Lett Math Phys 106, 879–911 (2016). https://doi.org/10.1007/s11005-016-0843-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-016-0843-9

Mathematics Subject Classification

Keywords

Navigation