Skip to main content
Log in

Schnol’s Theorem and Spectral Properties of Massless Dirac Operators with Scalar Potentials

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The spectra of massless Dirac operators are of essential interest, e.g., for the electronic properties of graphene, but fundamental questions such as the existence of spectral gaps remain open. We show that the eigenvalues of massless Dirac operators with suitable real-valued potentials lie inside small sets easily characterized in terms of properties of the potentials, and we prove a Schnol-type theorem relating spectral points to polynomial boundedness of solutions of the Dirac equation. Moreover, we show that, under minimal hypotheses which leave the potential essentially unrestrained in large parts of space, the spectrum of the massless Dirac operator covers the whole real line; in particular, this will be the case if the potential is nearly constant in a sequence of regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balinsky A.A., Evans W.D.: On the virial theorem for the relativistic operator of Brown and Ravenhall, and the absence of embedding eigenvalues. Lett. Math. Phys. 44, 233–248 (1989)

    Article  MathSciNet  Google Scholar 

  2. Balinsky A.A., Evans W.D.: Spectral analysis of relativistic operators. Imperial College Press, London (2011)

    MATH  Google Scholar 

  3. Bardarson J.H., Titov M., Brouwer P.W.: Electrostatic confinement of electrons in an integrable graphene quantum dot. Phys. Rev. Lett. 102, 226803 (2009)

    Article  ADS  Google Scholar 

  4. Boutetde Monvel A., Lenz D., Stollmann P.: Sch’nol’s theorem for strongly local forms. Isr. J. Math. 173, 189–211 (2009)

    Article  MathSciNet  Google Scholar 

  5. Brown, B.M., Eastham, M.S.P., Schmidt, K.M.: Periodic differential operators. Operator theory: advances and applications, vol. 230. Birkhäuser, Basel (2013)

  6. Cycon, H.L., Froese, R.G., Kirsch, W.; Simon, B.: Schrödinger operators. Texts and monographs in physics, Springer-Verlag, Berlin-Heidelberg (1987)

  7. Du X., Skachko I., Duerr F., Luican A., Andrei E.Y.: Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature. 462(8522), 192–195 (2009)

    Article  ADS  Google Scholar 

  8. Gilbert D.J., Pearson D.B.: On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators. J. Math. Anal. Appl. 128, 30–56 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gilbert D.J.: On subordinacy and analysis of the spectrum of Schrödinger operators with two singular endpoints. Proc. R. Soc. Edinb. 112, 213–229 (1989)

    Article  MATH  Google Scholar 

  10. Haeseler, S., Keller, M.: Generalized solutions and spectrum for Dirichlet forms on graphs. In: Lenz, D., Sobieczky, F., Woess, W. (eds.) Random Walks, boundaries and spectra, Progress in probability, vol. 64, pp. 181–199. Springer, Basel AG (2011)

  11. Jörgens, K.: Perturbations of the Dirac operator. In: Everitt, W.N., Sleeman, B.D. (eds.) Conference on the theory of ordinary and partial differential equation, Lecture Notes in Mathematics, vol. 280, pp. 87–102 (1972)

  12. Kalf H., Ōkaji T., Yamada O.: Absence of eigenvalues of Dirac operators with potentials diverging at infinity. Math. Nachr. 259, 19–41 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lenz, D., Stollmann, P., Veselic’, I.: Generalized eigenfunctions and spectral theory for strongly local Dirichlet forms. Spectral theory and analysis, Operator theory: advances and applications, vol. 214, pp. 83–106. Springer, Basel AG (2011)

  14. Loss M., Yau H.T.: Stability of Coulomb systems with magnetic fields. III. Zero energy bound states of the Pauli operators. Commun. Math. Phys. 104, 283–290 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Katsnelson M.I., Grigorieva I.V., Dubonos S.V., Firsov A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(4233), 197–200 (2005)

    Article  ADS  Google Scholar 

  16. Peres N.M.R.: The transport properties of graphene: an introduction. Rev. Modern Phys. 82, 2673–2700 (2010)

    Article  ADS  Google Scholar 

  17. Reed M., Simon B.: Methods of modern mathematical physics I, Functional analysis, Revised and enlarged edition. Academic Press, Orlando (1990)

    Google Scholar 

  18. Schmidt K.M.: Absolutely continuous spectrum of Dirac systems with potentials infinite at infinity. Math. Proc. Camb. Phil. Soc. 122, 377–384 (1997)

    Article  MATH  Google Scholar 

  19. Schmidt K.M.: Dense point spectrum for the one-dimensional Dirac operator with an electrostatic potential. Proc. R. Soc. Edinb. 126, 1087–1096 (1996)

    Article  MATH  Google Scholar 

  20. Schmidt K.M.: Spectral properties of rotationally symmetric massless Dirac operators. Lett. Math. Phys. 92, 231–241 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Schmidt, K.M., Umeda, T.: Spectral properties of massless Dirac operators with real-valued potentials, RIMS Kôkyûroku Bessatsu B45: Spectral and Scattering Theory and Related Topics. RIMS, Kyoto University, pp. 25–30 (2014)

  22. Stein E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  23. Stolz G.: On the absolutely continuous spectrum of perturbed Sturm-Liouville operators. J. Reine Angew. Math. 416, 1–23 (1991)

    MATH  MathSciNet  Google Scholar 

  24. Thaller B.: The Dirac equation. Springer-Verlag, Berlin (1992)

    Book  Google Scholar 

  25. Weidmann, J.: Spectral theory of ordinary differential operators, Lect. Notes in Math., vol. 1258. Springer-Verlag, Berlin

  26. Zhao, P., Yuan, S., Katsnelson, M.I., De Raedt, H.: Fingerprints of disordered source in graphene. arXiv:1503.02541

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomio Umeda.

Additional information

Supported by the Japan Society for the Promotion of Science “Grant-in-Aid for Scientific Research” (C) No. 21540193.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, K.M., Umeda, T. Schnol’s Theorem and Spectral Properties of Massless Dirac Operators with Scalar Potentials. Lett Math Phys 105, 1479–1497 (2015). https://doi.org/10.1007/s11005-015-0799-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-015-0799-1

Mathematics Subject Classification

Keywords

Navigation