Skip to main content
Log in

2.5D Hexahedral Meshing for Reservoir Simulations

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

We present a new method for generating pure hexahedral meshes for reservoir simulations. The grid is obtained by extruding a quadrangular mesh, using ideas from the latest advances in computational geometry, specifically the generation of semi-structured quadrangular meshes based on global parameterization. Hexahedral elements are automatically constructed to smoothly honor the geometry of input features (domain boundaries, faults, and horizons), thus making it possible to be used for multiple types of physical simulations on the same mesh. The main contributions are as follows: the introduction of a new semi-structured hexahedral meshing workflow producing high-quality meshes for a wide range of fault systems, and the study and definition of weak verticality on triangulated surface meshes. This allows us to design better and more robust algorithms during the extrusion phase along non-vertical faults. We demonstrate (i) the simplicity of using such hexahedral meshes generated using the proposed method for coupled flow-geomechanics simulations with state-of-the-art simulators for reservoir studies, and (ii) the possibility of using such semi-structured hexahedral meshes in commercial structured flow simulators, offering an alternative gridding approach to handle a wider family of fault networks without recourse to the stair-step fault approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

Download references

Acknowledgements

We thank TotalEnergies and IFP Energies Nouvelles for kindly providing the geological model shown in Figs. 13 and 15 as testing case with stratigraphic unconformities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Lopez.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez, D., Coudert-Osmont, Y., Desobry, D. et al. 2.5D Hexahedral Meshing for Reservoir Simulations. Math Geosci (2024). https://doi.org/10.1007/s11004-023-10106-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11004-023-10106-5

Keywords

Navigation