Skip to main content
Log in

Solving the Vialov Equation of Glaciology in Terms of Elementary Functions

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

Very few exact solutions are known for the non-linear Vialov ordinary differential equation describing the longitudinal profiles of alpine glaciers and ice caps under the assumption that the ice deforms according to Glen’s constitutive relationship. Using a simple, yet wide, class of models for the accumulation rate of ice and Chebysev’s theorem on the integration of binomial differentials, many new exact solutions of the Vialov equations are obtained in terms of elementary functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahr DB, Pfeffer WT, Kaser G (2015) A review of volume-area scaling of glaciers. Rev Geophys 10:95–140. doi:10.1002/2014RG000470

    Article  Google Scholar 

  • Benn DI, Hulton NRJ (2010) An excel spreadsheet program for reconstructing the surface profile of former mountain glaciers and ice caps. Comput Geosci 36:605–610. doi:10.1016/j.cageo.2009.09.016

    Article  Google Scholar 

  • Böðvardsson G (1955) On the flow of ice-sheets and glaciers. Jökull 5:1–8

    Google Scholar 

  • Brauer F, Noel JA (1986) Introduction to differential equations with applications. Harper and Row, New York

    Google Scholar 

  • Buckingham E (1914) On physically similar systems: illustrations of the use of dimensional equations. Phys Rev 4:335–376

    Article  Google Scholar 

  • Bueler E (2003) Construction of steady state solutions for isothermal shallow ice sheets. Department of Mathematics and Statistics (UAF DMS technical report 03-02). University of Alaska Fairbanks, Fairbanks, AK

  • Bueler E, Lingle CS, Kallen-Brown JA, Covey DN, Bowman LN (2005) Exact solutions and verification of numerical models for isothermal ice sheets. J Glaciol 51:291–306

    Article  Google Scholar 

  • Chebyshev PL (1853) Sur l’integration des différentielles irrationnelles. Journal de mathematiques (series 1) 18:87–111

  • Cuffey KM, Paterson WSB (2010) The physics of glaciers. Elsevier, Amsterdam

    Google Scholar 

  • Faraoni V (2016) Volume/area scaling of glaciers and ice caps and their longitudinal profiles. J Glaciol. doi:10.1017/jog.2016.79

  • Faraoni V, Vokey MW (2015) The thickness of glaciers. Eur J Phys 36:055031/1–11. doi:10.1088/0143-0807/36/5/055031

  • Glen JW (1955) The creep of polycrystalline ice. Proc R Soc Lond A 228:519–538

    Article  Google Scholar 

  • Greve R, Blatter H (2009) Dynamics of ice sheets and glaciers. Springer, New York

    Book  Google Scholar 

  • Hooke RL (2005) Principles of glacier mechanics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Marchisotto EA, Zakeri G-A (1994) An invitation to integration in finite terms. Coll Math J 25:295–308

    Article  Google Scholar 

  • Ng FSL, Barr ID, Clark CD (2010) Using the surface profiles of modern ice masses to inform palaeo-glacier reconstruction. Quat Sci Rev 29:3240–3255. doi:10.1016/j.quascirev.2010.06.045

    Article  Google Scholar 

  • Nye JF (1951a) The flow of glaciers and ice-sheets as a problem in plasticity. Proc R Soc Lond A 207:554–572

    Article  Google Scholar 

  • Nye JF (1951b) A method of calculating the thicknesses of the ice-sheets. Nature 169:529–530

    Article  Google Scholar 

  • Paterson WSB (1972) Laurentide ice sheet: estimated volume during late Wisconsin. Rev Geophys Space Phys 10:885–917

    Article  Google Scholar 

  • Paterson WSB (1994) The physics of glaciers, 3rd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Thorp PW (1991) Surface profiles and basal shear stresses of outlet glaciers from a late-glacial mountain ice field in Western Scotland. J Glaciol 37:77–88

    Article  Google Scholar 

  • Vialov SS (1958) Regularization of glacial shields movement and the theory of plastic viscous flow. In: IAHS Publication 47 (symposium at Chamonix (1958) physics of the movement of the ice). IAHS Press, Wallingford, UK

  • Weertman J (1961) Stability of ice-age ice sheets. J Geophys Res 66:3783–3792

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to a referee for helpful suggestions. This work is supported by Bishop’s University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Faraoni.

Appendices

Appendices

1.1 Exact Solutions of the Vialov Equation for Some Rational Values of r

In the range of parameters \(\left( p, q, r \right) \) in which the Chebysev theorem is satisfied, computer algebra easily provides the integral (6) for the choice (10) of c(x). Here some of these integrals and the corresponding longitudinal glacier profiles are reported for various values of the parameter r listed in Eq. (10) (in decreasing order), which correspond to values of \(m_0\) reported in Eq. (15).

$$\begin{aligned} r= & {} \frac{4}{3} \,, \end{aligned}$$
(A.1)
$$\begin{aligned} V(x)= & {} \frac{9\left( a+b \,x^{4/3}\right) ^{4/3}}{16b} +D \,, \end{aligned}$$
(A.2)
$$\begin{aligned} h(x)= & {} h_0 \left[ \left( a+b \,x^{4/3}\right) ^{4/3}+D\right] ^{3/8} \,, \end{aligned}$$
(A.3)

where D is, as usual, an integration constant. For \(D=0\) one obtains

$$\begin{aligned} h(x) = h_0 \left( a+b \,x^{4/3}\right) ^{3/8} \end{aligned}$$
(A.4)

and, if also \(a=0\), one obtains again \(h(x)=h_0 \sqrt{x}\). Another possibility is

$$\begin{aligned} r= & {} \frac{2}{3} \,, \end{aligned}$$
(A.5)
$$\begin{aligned} V(x)= & {} \frac{9\left( a+b \, x^{2/3}\right) ^{1/3} \left( -3a^2+abx^{2/3}+4b^2 x^{4/3} \right) }{56b^2} +D \,, \end{aligned}$$
(A.6)
$$\begin{aligned} h(x)= & {} h_0 \left[ D_0 +\left( a+b \, x^{2/3}\right) ^{1/3} \left( -3a^2+abx^{2/3}+4b^2 x^{4/3} \right) \right] ^{3/8}\,, \end{aligned}$$
(A.7)

where \(D_0\) is another constant. Other possibilities are

$$\begin{aligned} r= & {} \frac{4}{9} \,, \end{aligned}$$
(A.8)
$$\begin{aligned} V(x)= & {} \frac{27}{560b^3} \Bigg ( a+b \, x^{4/9}\Bigg )^{1/3} \nonumber \\&\times \Bigg ( 9a^3 -3 a^2 b x^{4/9} +2 a b^2 x^{8/9} +14 b^3 x^{4/3} \Bigg ) +D \,, \end{aligned}$$
(A.9)
$$\begin{aligned} h(x)= & {} h_0 \Bigg [ D_0 + \Bigg ( a+b \, x^{4/9}\Bigg )^{1/3}\nonumber \\&\times \Bigg ( 9a^3 -3 a^2 b x^{4/9} +2 a b^2 x^{8/9} +14 b^3 x^{4/3} \Bigg )\Bigg ]^{3/8} \end{aligned}$$
(A.10)
$$\begin{aligned} r= & {} \frac{1}{3} \,, \end{aligned}$$
(A.11)
$$\begin{aligned} V(x)= & {} \frac{9}{1820b^4} \Bigg ( a+b \, x^{1/3}\Bigg )^{1/3} \nonumber \\&\times \Bigg ( -81a^4 +27 a^3 b x^{1/3} -18 a^2 b^2 x^{2/3} +14 ab^3 x +140 x^{4/3} \Bigg ) \nonumber \\&+D \,, \end{aligned}$$
(A.12)
$$\begin{aligned} h(x)= & {} h_0 \Bigg [ D_0 + \Bigg ( a+b \, x^{1/3}\Bigg )^{1/3}\nonumber \\&\cdot \Bigg ( -81a^4 +27 a^3 b x^{1/3} -18 a^2 b^2 x^{2/3} +14 ab^3 x +140 x^{4/3} \Bigg ) \Bigg ]^{3/8} \,; \end{aligned}$$
(A.13)
$$\begin{aligned} r= & {} \frac{4}{15} \,, \end{aligned}$$
(A.14)
$$\begin{aligned} V(x)= & {} \frac{9}{5824 b^5} \Bigg ( a+b \, x^{4/15}\Bigg )^{1/3} \Bigg ( 243a^5 -81a^4 b x^{4/15} +54 a^3 b^2 x^{8/15} \nonumber \\&-42 a^2 b^3 x^{4/5}+35 a b^4 x^{16/15} +455 b^5 x^{4/3} \Bigg ) +D \,, \end{aligned}$$
(A.15)
$$\begin{aligned} h(x)= & {} h_0 \Bigg [ D_0+ \Bigg ( a+b \, x^{4/15}\Bigg )^{1/3} \Bigg ( 243a^5 -81a^4 b x^{4/15} +54 a^3 b^2 x^{8/15} \nonumber \\&-42 a^2 b^3 x^{4/5} +35 a b^4 x^{16/15} +455 b^5 x^{4/3} \Bigg ) \Bigg ]^{3/8}; \end{aligned}$$
(A.16)
$$\begin{aligned} r= & {} \frac{2}{9} \,, \end{aligned}$$
(A.17)
$$\begin{aligned} V(x)= & {} \frac{27}{55328b^6} \Bigg ( a+b \, x^{2/9}\Bigg )^{1/3} \nonumber \\&\times \Bigg ( -729a^6 +243 a^5 b x^{2/9} -162 a^4 b^2 x^{4/9} +126 a^3b^3 x^{2/3} \nonumber \\&-105 a^2b^4 x^{8/9} +91ab^5 x^{10/9} +1456 b^6x^{4/3} \Bigg ) +D, \end{aligned}$$
(A.18)
$$\begin{aligned} h(x)= & {} h_0 \Bigg [ D_0 + \Bigg ( a+b \, x^{2/9}\Bigg )^{1/3} \nonumber \\&\times \Bigg ( -729a^6 +243 a^5 b x^{2/9} -162 a^4 b^2 x^{4/9} +126 a^3b^3 x^{2/3} \nonumber \\&-105 a^2b^4 x^{8/9} +91ab^5 x^{10/9} +1456 b^6x^{4/3} \Bigg ) \Bigg ]^{3/8} , \end{aligned}$$
(A.19)
$$\begin{aligned} r= & {} \frac{4}{21} \,, \end{aligned}$$
(A.20)
$$\begin{aligned} V(x)= & {} \frac{9}{173888 b^7} \Bigg ( a+b \, x^{4/21}\Bigg )^{1/3} \nonumber \\&\times \Bigg ( 6561 a^7 -2187 a^6 b x^{4/21} +1458 a^5 b^2 x^{8/21} -1134 a^4 b^3 x^{4/7} \nonumber \\&+945 a^3 b^4 x^{16/21} -819 a^2 b^5 x^{20/21} +728 ab^6 x^{8/7} +13832 b^7 x^{4/3} \Bigg ) +D,\nonumber \\ \end{aligned}$$
(A.21)
$$\begin{aligned} h(x)= & {} h_0 \Bigg [ D_0+ \Bigg ( a+b \, x^{4/21}\Bigg )^{1/3} \nonumber \\&\times \Bigg ( 6561 a^7 -2187 a^6 b x^{4/21} +1458 a^5 b^2 x^{8/21} -1134 a^4 b^3 x^{4/7} \nonumber \\&+945 a^3 b^4 x^{16/21} -819 a^2 b^5 x^{20/21} +728 ab^6 x^{8/7} +13832 b^7 x^{4/3} \Bigg ) \Bigg ]^{3/8}, \end{aligned}$$
(A.22)
$$\begin{aligned} r= & {} \frac{1}{6} \,, \end{aligned}$$
(A.23)
$$\begin{aligned} V(x)= & {} \frac{9}{543400 b^8} \Bigg ( a+b \, x^{1/6}\Bigg )^{1/3} \nonumber \\&\times \Bigg ( -19683 a^8 +6561 a^7 b x^{1/6} -4374 a^6 b^2 x^{1/3} +3402 a^5 b^3 \sqrt{x} \nonumber \\&-2835 a^4 b^4 x^{2/3} +2457 a^3 b^5 x^{5/6} -2184 a^2 b^6 x \nonumber \\&+1976 a b^7 x^{7/6} +43472 b^8 x^{4/3} \Bigg ) +D, \end{aligned}$$
(A.24)
$$\begin{aligned} h(x)= & {} h_0 \Bigg [ D_0+ \Bigg ( a+b \, x^{1/6}\Bigg )^{1/3} \Bigg ( -19683 a^8 +6561 a^7 b x^{1/6} \nonumber \\&\times -4374 a^6 b^2 x^{1/3} +3402 a^5 b^3 \sqrt{x} \nonumber \\&\, -2835 a^4 b^4 x^{2/3} +2457 a^3 b^5 x^{5/6} -2184 a^2 b^6 x \nonumber \\&\times +1976 a b^7 x^{7/6} +43472 b^8 x^{4/3} \Bigg ) \Bigg ]^{3/8}{.} \end{aligned}$$
(A.25)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faraoni, V. Solving the Vialov Equation of Glaciology in Terms of Elementary Functions. Math Geosci 49, 1057–1067 (2017). https://doi.org/10.1007/s11004-017-9697-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-017-9697-7

Keywords

Navigation