Skip to main content

Advertisement

Log in

Risk Assessment of Soil Compaction in the Walloon Region in Belgium

  • Special Issue
  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

It is well known that soil compaction affects root growth and disrupts the activity of soil microfauna and microorganisms, resulting in yield loss. With the more intensive use of heavy machines in agriculture and forestry, the risk of soil compaction is increasing. In this study, precompression stress (Pc) was chosen as an indicator of the susceptibility of soils to compaction and was calculated using pedotransfer functions (PTFs). PTFs involve eight variables related to the hydraulic and mechanical behaviour of soils: organic matter content, bulk density, air capacity, available water capacity, non-plant available water capacity, saturated hydraulic conductivity, cohesion, and angle of internal friction. Combining these PTFs with geostatistics and Monte Carlo simulations, Pc maps were produced at the regional scale for Wallonia in Belgium, accompanied by uncertainty quantification maps. These maps were then used to produce compaction risk maps based on common scenarios. The results showed that the modal Pc map was coherent with the spatial distribution of the main variables, namely soil texture and organic matter content. The risk maps enabled areas with a compaction risk in both agricultural and forestry contexts to be identified. These maps could be useful in drawing up soil protection measures and policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aitchison J (1986) The statistical analysis of compositional data. Chapman & Hall, London

    Book  Google Scholar 

  • Aitchison J (1997) The one-hour course in compositional data analysis or compositional data analysis is simple. CIMNE, pp 3-35

  • CNSW (2013) Carte numérique des sols de Wallonie. Service Public de Wallonie. http://geoportail.wallonie.be/cms/render/live/fr/sites/geoportail/contents/metadata/plainData/38c2a87e-d38a-4359-9899-9d4a6b9f0c2a.html

  • COM (2006) 232 final. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2006:0232:FIN:EN:PDF

  • COSW (2013) Carte d’occupation des sols de Wallonie. Service Public de Wallonie. http://geoportail.wallonie.be/cms/render/live/fr/sites/geoportail/contents/metadata/plainData/7539bf98-4d80-459f-8274-312563c2bab4.html

  • Cressie N (1993) Statistics for spatial data. Wiley, New York

  • D’Or D (2003) Spatial prediction of soil properties, the bayesian maximum entropy approach. PhD thesis, Faculté d’Ingénierie Biologique, Agronomique et Environnementale, Université catholique de Louvain

  • D’Or D, Destain MF (2014) Toward a tool aimed to quantify soil compaction risks at a regional scale: application to Wallonia (Belgium). Soil Tillage Res 144:53–71

    Article  Google Scholar 

  • D’Or D, Bogaert P, Christakos G (2001) Application of the BME approach to soil texture mapping. Stoch Env Res Risk A 15(1):87–100

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Goutal N (2012) Modifications et restauration de propriétés physiques et chimiques de deux sols forestiers soumis au passage d’un engin d’exploitation. PhD thesis, Institut des Sciences et Industries du Vivant et de l’Environnement, AgroParisTech

  • Greacen E, Sands R (1980) Compaction of forest soils. A review. Aust J Soil Res 18:163–189

    Article  Google Scholar 

  • Hakansson I, Reeder R (1994) Subsoil compaction by vehicles with high axle load extent, persistence and crop response. Soil Tillage Res 29:277–304

    Article  Google Scholar 

  • Hamza MA, Anderson W (2005) Soil compaction in cropping systems—a review of the nature, causes and possible solutions. Soil Tillage Res 82:121–145

    Article  Google Scholar 

  • Hanquet B, Sirjacobs D, Destain MF, Frankinet M, Verbrugge JC (2004) Analysis of soil variability measured with a soil strength sensor. Precis Agric 5(3):227–246

    Article  Google Scholar 

  • Heuvelink G, Pebesma E (1999) Spatial aggregation and soil process modelling. Geoderma 89:47–65

    Article  Google Scholar 

  • Hoefer G (2010) Subsoil compaction: causes, impact, detection, and prevention. Soil Eng Soil Biol 20:121–145

    Article  Google Scholar 

  • Hollis J, Hannam J, Bellamy P (2012) Empirically-derived pedotransfer functions for predicting bulk density in european soils. Eur J Soil Sci 63:96–109

    Article  Google Scholar 

  • Horn R, Fleige H (2003) A method for assessing the impact of load on mechanical stability and on physical properties of soils. Soil Tillage Res 73:89–99

    Article  Google Scholar 

  • Jarvis N (2007) A review of non equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur J Soil Sci 58:523–546

    Article  Google Scholar 

  • Jones R, Spoor G, Thomasson A (2003) Vulnerability of subsoils in europe to compaction: a preliminary analysis. Soil Tillage Res 73:131–143

    Article  Google Scholar 

  • Nawaz M, Bourrié G, Trolard F (2013) Soil compaction impact and modelling. A review. Agron Sustain Dev 33(2):291–309

    Article  Google Scholar 

  • Nelson D, Sommers L (1996) Total carbon, organic carbon, and organic matter. In: Methods of soil analysis. Part 2, agronomy. American Society of Agronomy, Inc., Madison, pp 961-1010

  • Pawlowsky V, Olea RA, Davis JC (1995) Estimation of regionalized compositions—a comparison of 3 methods. Math Geol 27(1):105–127

    Article  Google Scholar 

  • Stettler M, Keller T, Schjonning P, Lamande M, Lassen P, Pedersen J, Weisskopf P (2010) Terranimo–a web-based tool for assessment of the risk of soil compaction due to agricultural field traffic. In: Proceedings of AgEng 2010

  • Van Orshoven J, Maes J, Vereecken H, Feyen J, Dudal R (1988) A structural database of belgian soil profile data. Pedologie 38:191–206

    Google Scholar 

  • Walvoort DJJ, De Gruijter JJ (2001) Compositional kriging: a spatial interpolation method for compositional data. Math Geol 33(8):951–966

    Article  Google Scholar 

  • Wösten J (2000) The hypres database of hydraulic properties of European soils. Adv Geoecol 32:135–143

    Google Scholar 

Download references

Acknowledgments

This work was funded by the SPW (Service Public de Wallonie), DGARNE (Direction Générale Opérationnelle de l’Agriculture, des Ressources Naturelles et de l’Environnement). The authors also acknowledge three anonymous reviewers for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri D’Or.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Or, D., Destain, MF. Risk Assessment of Soil Compaction in the Walloon Region in Belgium. Math Geosci 48, 89–103 (2016). https://doi.org/10.1007/s11004-015-9617-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-015-9617-7

Keywords

Navigation