Skip to main content
Log in

A New Method to Quantify Carbonate Rock Weathering

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

The structure and composition of carbonate rocks are modified greatly when they are subjected to phenomena that lead to their weathering. These processes result in the production of residual alterite whose petrophysical, mechanical, and hydrological properties differ completely from those of the unweathered rock. From a geotechnical perspective, it is important that such changes are fully understood as they affect reservoir behavior and rock mass stability. This paper presents a quantitative method of calculating a weathering index for carbonate rock samples based on a range of petrophysical models. In total, four models are proposed, each of which incorporates one or more of the processes involved in carbonate rock weathering (calcite dissolution, gravitational compaction, and the incorporation of inputs). The selected weathering processes are defined for each model along with theoretical laws that describe the development of the rock properties. Based on these laws, common properties such as rock density, porosity, and calcite carbonate content are estimated from the specific carbonate rock weathering index of the model. The propagation of measurement uncertainties through the calculations has been computed for each model in order to estimate their effects on the calculated weathering index. A new methodology is then proposed to determine the weathering index for carbonate rock samples taken from across a weathered feature and to constrain the most probable weathering scenario. This protocol is applied to a field dataset to illustrate how these petrophysical models can be used to quantify the weathering and to better understand the underlying weathering processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Begonha A, Sequeira Braga MA (2002) Weathering of the Oporto Granite: geotechnical and physical properties. Catena 49:57–76. doi:10.1016/S0341-8162(02)00016-4

  • Bozkurtoğlu E, Vardar M, Suner F, Zambak C (2006) A new numerical approach to weathering and alteration in rock using a pilot area in the Tuzla geothermal area, Turkey. Eng Geol 87:33–47. doi:10.1016/j.enggeo.2006.06.002

  • Buchignani V, Avanzi GD, Giannecchini R, Puccinelli A (2008) Evaporite karst and sinkholes: a synthesis on the case of Camaiore (Italy). Environ Geol 53:1037–1044. doi:10.1007/s00254-007-0730-x

    Article  Google Scholar 

  • Burchette TP (2012) Carbonate rocks and petroleum reservoirs: a geological perspective from the industry. Geol Soc Lond Spec Publ 370:17–37. doi:10.1144/SP370.14

    Article  Google Scholar 

  • Buttrick DB, Schalkwyk A (1998) Hazard and risk assessment for sinkhole formation on dolomite land in South Africa. Environ Geol 36:170–178. doi:10.1007/s002540050333

    Article  Google Scholar 

  • Ceryan S, Zorlu K, Gokceoglu C, Temel A (2008) The use of cation packing index for characterizing the weathering degree of granitic rocks. Eng Geol 98:60–74. doi:10.1016/j.enggeo.2008.01.007

    Article  Google Scholar 

  • Chigira M (1990) A mechanism of chemical weathering of mudstone in a mountainous area. Eng Geol 29:119–138. doi:10.1016/0013-7952(90)90002-I

    Article  Google Scholar 

  • Chigira M, Sone K (1991) Chemical weathering mechanisms and their effects on engineering properties of soft sandstone and conglomerate cemented by zeolite in a mountainous area. Eng Geol 30:195–219. doi:10.1016/0013-7952(91)90043-K

    Article  Google Scholar 

  • Chigira M, Oyama T (2000) Mechanism and effect of chemical weathering of sedimentary rocks. Eng Geol 55:3–14. doi:10.1016/S0013-7952(99)00102-7

    Article  Google Scholar 

  • Chilingarian GV, Mazzullo SJ, Rieke HH (1992) Carbonate reservoir characterization: a geologic-engineering analysis. Elsevier, Amsterdam

    Google Scholar 

  • Dearman WR (1974) Weathering classification in the characterisation of rock for engineering purposes in British practice. Bull Int Assoc Eng Geol, pp 33–42. doi:10.1007/BF02635301

  • Dearman WR, Baynes FJ, Irfan TY (1978) Engineering grading of weathered granite. Eng Geol 12:345–374. doi:10.1016/0013-7952(78)90018-2

    Article  Google Scholar 

  • Dougherty P (2005) Sinkhole destruction of Corporate Plaza, Pennsylvania. In: Waltham T, Bell F, Culshaw M (eds) Sinkholes and subsidence. Springer, Chichester, pp 304–308

    Google Scholar 

  • Dubois C, Quinif Y, Baele J-M, Barriquand L, Bini A, Bruxelles L, Dandurand G, Havron C, Kaufmann O, Lans B, Maire R, Martin J, Rodet J, Rowberry MD, Tognini P, Vergari A (2014) The process of ghost-rock karstification and its role in the formation of cave systems. Earth Sci Rev 131:116–148. doi:10.1016/j.earscirev.2014.01.006

    Article  Google Scholar 

  • Dubois C, Quinif Y, Baele J-M, Dagrain F, Deceuster J, Kaufmann O (2014b) The evolution of the mineralogical and petrophysical properties of a weathered limestone in southern Belgium. Geol Belg 17:1–8

    Google Scholar 

  • Fookes PG, Gourley CS, Ohikere C (1988) Rock weathering in engineering time. Q J Eng Geol 21:33–58. doi:10.1144/GSL.QJEG.1988.021.01.03

    Article  Google Scholar 

  • Gupta AS, Rao SK (2001) Weathering indices and their applicability for crystalline rocks. Bull Eng Geol Environ 60:201–221. doi:10.1007/s100640100113

    Article  Google Scholar 

  • Gupta AS, Seshagiri Rao K (2000) Weathering effects on the strength and deformational behaviour of crystalline rocks under uniaxial compression state. Eng Geol 56:257–274. doi:10.1016/S0013-7952(99)00090-3

    Article  Google Scholar 

  • Hodder APW (1984) Thermodynamic interpretation of weathering indices and its application to engineering properties of rocks. Eng Geol 20:57–85. doi:10.1016/0013-7952(84)90004-8

    Article  Google Scholar 

  • Hodder APW, Hetherington JR (1991) A quantitative study of the weathering of greywacke. Eng Geol 31:353–368. doi:10.1016/0013-7952(1)90017-F

    Article  Google Scholar 

  • Irfan TY (1996) Mineralogy, fabric properties and classification of weathered granites in Hong Kong. Q J Eng Geol Hydrogeol 29:5–35. doi:10.1144/GSL.QJEGH.1996.029.P1.02

    Article  Google Scholar 

  • Irfan TY, Dearman WR (1978) Engineering classification and index properties of a weathered granite. Bull Int Assoc Eng Geol 17:79–90. doi:10.1007/BF02634696

    Article  Google Scholar 

  • Jayawardena US, Izawa E (1994) A new chemical index of weathering for metamorphic silicate rocks in tropical regions: a study from Sri Lanka. Eng Geol 36:303–310. doi:10.1016/0013-7952(94)90011-6

  • Kaufmann O (2000) Les effondrements karstiques du Tournaisis: genèse, évolution, localisation, prévention. PhD Thesis, Faculté Polytechnique de Mons

  • Kaufmann O, Deceuster J (2014) Detection and mapping of ghost-rock features in the Tournaisis area through geophysical methods—an overview. Geol Belg 17:17–26

    Google Scholar 

  • Kaufmann O, Deceuster J, Quinif Y (2012) An electrical resistivity imaging-based strategy to enable site-scale planning over covered palaeokarst features in the Tournaisis area (Belgium). Eng Geol 133–134:49–65. doi:10.1016/j.enggeo.2012.01.017

    Article  Google Scholar 

  • Kontorovich VA (2007) Petroleum potential of reservoirs at the Paleozoic–Mesozoic boundary in West Siberia: seismogeological criteria (example of the Chuzik-Chizhapka regional oil–gas accumulation). Russ Geol Geophys 48:422–428. doi:10.1016/j.rgg.2007.05.002

    Article  Google Scholar 

  • Lan HX, Hu RL, Yue ZQ, Lee CF, Wang SJ (2003) Engineering and geological characteristics of granite weathering profiles in South China. J Asian Earth Sci 21:353–364. doi:10.1016/S1367-9120(02)00020-2

    Article  Google Scholar 

  • Lumb P (1962) The properties of decomposed granite. Géotechnique 12:226–243. doi:10.1680/geot.1962.12.3.226

    Article  Google Scholar 

  • Lumb P (1983) Engineering properties of fresh and decomposed igneous rocks from Hong Kong. Eng Geol 19:81–94. doi:10.1016/0013-7952(83)90027-3

    Article  Google Scholar 

  • Marques EAG, Barroso EV, Menezes Filho AP, Vargas EA Jr (2010) Weathering zones on metamorphic rocks from Rio de Janeiro—physical, mineralogical and geomechanical characterization. Eng Geol 111:1–18. doi:10.1016/j.enggeo.2009.11.001

  • Mendes FM, Aires-Barros L, Rodrigues FP (1966) The use of modal analysis in the mechanical characterization of rock masses. In: Proc 1st Int Cong Rock Mech, vol I, pp 217–223

  • Moon V, Jayawardane J (2004) Geomechanical and geochemical changes during early stages of weathering of Karamu Basalt, New Zealand. Eng Geol 74:57–72. doi:10.1016/j.enggeo.2004.02.002

    Article  Google Scholar 

  • Onodera TF, Yoshinaka R, Oda M (1974) Weathering and its relation to mechanical properties of granite. In: Proc 3rd Int Congr Rock Mech, vol II, pp 71–78

  • Orhan M, Işık NS, Topal T, Özer M (2006) Effect of weathering on the geomechanical properties of andesite, Ankara-Turkey. Environ Geol 50:85–100. doi:10.1007/s00254-006-0189-1

    Article  Google Scholar 

  • Pellegrino A, Prestininzi A (2007) Impact of weathering on the geomechanical properties of rocks along thermal-metamorphic contact belts and morpho-evolutionary processes: the deep-seated gravitational slope deformations of Mt. Granieri-Salincriti (Calabria-Italy). Geomorphology 87:176–195. doi:10.1016/j.geomorph.2006.03.032

    Article  Google Scholar 

  • Price DG (2009) Engineering geology: principles and practice. Springer, Berlin

    Google Scholar 

  • Price JR, Velbel MA (2003) Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chem Geol 202:397–416. doi:10.1016/j.chemgeo.2002.11.001

    Article  Google Scholar 

  • Qi S, Yue ZQ, Wu F, Chang Z (2009) Deep weathering of a group of thick argillaceous limestone rocks near Three Gorges Reservoir, Central China. Int J Rock Mech Min Sci 46:929–939. doi:10.1016/j.ijrmms.2009.03.006

    Article  Google Scholar 

  • Quinif Y (2010) Fantômes de roche et fantômisation—essai sur un nouveau paradigme en karstogenèse. Karstologia Mémoires 18

  • Quinif Y, Meon H, Yans J (2006) Nature and dating of karstic filling in the Hainaut Province (Belgium). Karstic, geodynamic and paleogeographic implications. Geodin Acta 19:73–85. doi:10.3166/ga.19.73-85

    Article  Google Scholar 

  • Quinif Y, Baele J-M, Dubois C, Havron C, Kaufmann O, Vergari A (2014) Ghost-karstification theory: a new paradigm between Davis’ two phases’ theory and Erhart’s biorhexistasy theory. Geol Belg 17:66–74

    Google Scholar 

  • Ruxton BP, Berry L (1957) Weathering of granite and associated erosional features in Hong Kong. Geol Soc Am Bull 68:1263–1292. doi:10.1130/0016-7606(1957)68[1263:WOGAAE]2.0.CO;2

  • Sequeira Braga MA, Paquet H, Begonha A (2002) Weathering of granites in a temperate climate (NW Portugal): granitic saprolites and arenization. Catena 49:41–56. doi:10.1016/S0341-8162(02)00017-6

    Article  Google Scholar 

  • Sowers GF (1996) Building on sinkholes: design and construction of foundations in karst terrain. ASCE Press, New York

    Book  Google Scholar 

  • Tugrul A, Zarif IH (2000) Engineering aspects of limestone weathering in Istanbul, Turkey. Bull Eng Geol Environ 58:191–206. doi:10.1007/s100640050075

    Article  Google Scholar 

  • Woo I, Fleurisson J-A, Park H-J (2006) Classification of weathering for granite and granite gneiss in South Korea. In: Proc 10th IAEG Int Congr, Paper 131

  • Yuan D, Liu Z (1998) Global karst correlation. VSP, Utrecht

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Les Carrières de la Pierre Bleue Belge SA for granting us permission to work in, and take samples from, their quarries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Dubois.

Appendix A: Mathematical Demonstrations

Appendix A: Mathematical Demonstrations

1.1 A.1 Model 1

1.1.1 A.1.1 Computation of CRWI\(_{1}^{i}\)

From Eq. (11)

$$\begin{aligned} \hbox {CRWI}_1 ^i=1-\frac{M_1^i }{M_1^f}. \end{aligned}$$

By multiplying the entire fraction by \(V_\mathrm{tot}/V_\mathrm{tot}\), the numerator by \(M_\mathrm{tot}^{i}{/}M_\mathrm{tot}^{i}\), and the denominator by \(M_\mathrm{tot}^{f}{/}M_\mathrm{tot}^{f}\)

$$\begin{aligned} \hbox {CRWI}_1 ^i=1-\frac{\frac{M_1^i}{M_\mathrm{tot}^i }\cdot \frac{M_\mathrm{tot}^i }{V_\mathrm{tot} }}{\frac{M_1^f }{M_\mathrm{tot}^f }\cdot \frac{M_\mathrm{tot}^f }{V_\mathrm{tot} }}. \end{aligned}$$

From the definitions of the rock properties [Eqs. (1), (2), and (3)]

$$\begin{aligned} \hbox {CRWI}_1 ^i=1-\frac{m_1^i \cdot \gamma _\mathrm{r}^i }{m_1^f \cdot \gamma _\mathrm{r}^f }=1-\frac{\gamma _1 \cdot v_1^i }{\gamma _1 \cdot v_1^f }=1-\frac{v_1^i }{v_1^f }. \end{aligned}$$

1.1.2 A.1.2 Computation of \(\gamma _\mathrm{r}^{i}=f(\hbox {CRWI}_{1}^{i})\)

From the definition of the weathering index [Eq. (13)]

$$\begin{aligned} v_1^i =(1-\hbox {CRWI}_1 ^i)\cdot v_1^f. \end{aligned}$$
(37)

Thanks to Eq. (9)

$$\begin{aligned} \gamma _\mathrm{r}^i =\gamma _1 \cdot v_1^i +\gamma _2 \cdot v_2 =\gamma _1 \cdot ( {1-\hbox {CRWI}_1 ^i})\cdot v_1^f +\gamma _2 \cdot v_2. \end{aligned}$$

Following the definition of the bulk density [Eq. (6)]

$$\begin{aligned} \gamma _\mathrm{r}^i =( {1-\hbox {CRWI}_1 ^i})\cdot {\Gamma }_1^f +{\Gamma }_2. \end{aligned}$$

1.1.3 A.1.3 Computation of \(v_{0}^{i}=f(\hbox {CRWI}_{1}^{i})\)

By combining Eqs. (7) and (37)

$$\begin{aligned} v_0^i =1-v_1^i -v_2 =1-( {1-\hbox {CRWI}_1 ^i})\cdot v_1^f -v_2. \end{aligned}$$

1.1.4 A.1.4 Computation of \(m_{1}^{i}=f(\hbox {CRWI}_{1}^{i})\)

By combining Eqs. (10), (14), and (37)

$$\begin{aligned} m_1^i&= \frac{\gamma _1 \cdot v_1^i }{\gamma _\mathrm{r}^i }= \frac{\gamma _1 \cdot (1-\hbox {CRWI}_1 ^i)\cdot v_1^f }{( {1-\hbox {CRWI}_1 ^i})\cdot \gamma _1 \cdot v_1^f +\gamma _2 \cdot v_2 }=\frac{1}{1+\frac{\gamma _2 \cdot v_2 }{( {1-\hbox {CRWI}_1 ^i})\cdot \gamma _1 \cdot v_1^f }} \\&= \frac{1}{1+\frac{{\Gamma }_2 }{( {1-\hbox {CRWI}_1^i})~\cdot ~{\Gamma }_1^f }}. \end{aligned}$$

1.2 A.2 Model 2

1.2.1 A.2.1 Computation of CRWI\(_{2}^{i}\)

From Eq. (11)

$$\begin{aligned} \hbox {CRWI}_2 ^i=1-\frac{M_1^i }{M_1^f }. \end{aligned}$$

By multiplying the entire fraction by \((V_\mathrm{tot}^{i} \cdot V_\mathrm{tot}^{f})/(V_\mathrm{tot}^{i}\cdot V_\mathrm{tot}^{f})\), the numerator by \(M_\mathrm{tot}^{i}/M_\mathrm{tot}^{i}\), and the denominator by \(M_\mathrm{tot}^{f}/M_\mathrm{tot}^{f}\)

$$\begin{aligned} \hbox {CRWI}_2 ^i=1-\frac{\frac{M_1^i }{M_\mathrm{tot}^i }\cdot \frac{M_\mathrm{tot}^i }{V_\mathrm{tot}^i }}{\frac{M_1^f }{M_\mathrm{tot}^f }\cdot \frac{M_\mathrm{tot}^f }{V_\mathrm{tot}^f }}\cdot \frac{V_\mathrm{tot}^f }{V_\mathrm{tot}^f }. \end{aligned}$$

From the generic definition of the compaction [Eq. (12)]

$$\begin{aligned} \frac{V_\mathrm{tot}^f }{V_\mathrm{tot}^f }=1-c^i. \end{aligned}$$

And with the definitions of the rock properties [Eqs. (1), (2), and (3)]

$$\begin{aligned} \hbox {CRWI}_2 ^i=1-\frac{v_1^i }{v_1^f }\cdot (1-c^i). \end{aligned}$$

1.2.2 A.2.2 Computation of \(c^{i}\)

From Eq. (12)

$$\begin{aligned} c^i=1-\frac{\text{ V }_\mathrm{tot}^i }{\text{ V }_\mathrm{tot}^f }. \end{aligned}$$

By multiplying the fraction by \(V_{2}/V_{2}\) and considering the definition of the volume fraction [Eq. (2)]

$$\begin{aligned} c^i=1-\frac{\frac{V_2 }{\text{ V }_\mathrm{tot}^f }}{\frac{V_2}{\text{ V }_\mathrm{tot}^i }}=1-\frac{v_2^f }{v_2^i }. \end{aligned}$$

1.2.3 A.2.3 Computation of \(\gamma _\mathrm{r}^{i}=f(\hbox {CRWI}_{2}^{i},c^{i})\)

From the definition of the weathering index [Eq. (17)]

$$\begin{aligned} v_1^i =\frac{(1-\hbox {CRWI}_2^i)}{(1-c^i)}\cdot v_1^f. \end{aligned}$$
(38)

From the definition of compaction [Eq. (18)]

$$\begin{aligned} v_2^i =\frac{v_2^f}{1-c^i}. \end{aligned}$$
(39)

By combining Eqs. (9), (38), and (39)

$$\begin{aligned} \gamma _\mathrm{r}^i =\gamma _1 \cdot v_1^i +\gamma _2 \cdot v_2^i =\gamma _1 \cdot \frac{(1-\mathrm{CRWI}_2 ^i)}{(1-c^i)}\cdot v_1^f +\gamma _2 \cdot \frac{1}{(1-c^i)}\cdot v_2^f. \end{aligned}$$

Following the definition of the bulk density [Eq. (6)]

$$\begin{aligned} \gamma _\mathrm{r}^i =\gamma _1 \cdot v_1^i +\gamma _2 \cdot v_2^i =\frac{(1-\mathrm{CRWI}_2 ^i)}{(1-c^i)}\cdot {\Gamma }_1^f +\frac{1}{(1-c^i)}\cdot {\Gamma }_2^f. \end{aligned}$$

1.2.4 A.2.4 Computation of \(v_{0}^{i}=f(\mathrm{CRWI}_{2}^{i}, c^{i})\)

By combining Eqs. (7), (38), and (39)

$$\begin{aligned} v_0^i =1-v_1^i -v_2^i =1-\frac{(1-\mathrm{CRWI}_2 ^i)}{(1-c^i)}\cdot v_1^f -\frac{1}{1-c^i}\cdot v_2^f. \end{aligned}$$

1.2.5 A.2.5 Computation of \(m_{1}^{i}=f(\mathrm{CRWI}_{2}^{i})\)

By combining Eqs. (10), (20), and (38)

$$\begin{aligned} m_1^i =\frac{\gamma _1 \cdot v_1^i }{\gamma _\mathrm{r}^i }=\frac{\frac{(1-\mathrm{CRWI}_2 ^i)}{(1-c^i)}\cdot {\Gamma }_1^f }{\frac{(1-\mathrm{CRWI}_2 ^i)}{(1-c^i)}\cdot {\Gamma }_1^f +\frac{1}{(1-c^i)}\cdot {\Gamma }_2^f }=\frac{1}{1+\frac{{\Gamma }_2^f }{( {1-\mathrm{CRWI}_1 ^i})\cdot {\Gamma }_1^f }}. \end{aligned}$$

1.3 A.3 Model 3

1.3.1 A.3.1 Computation of \(\mathrm{CRWI}_{3}^{i}\)

As the weathering is isovolumetric, \(V_\mathrm{tot}^{i}\) is equal to \(V_\mathrm{tot}^{f}\), the definition and demonstration of CRWI\(_{3}^{i}\) are the same as that for CRWI\(_{1}^{i}\) (Appendix A.1).

1.3.2 A.3.2 Computation of \(v_{0}^{i}=f(\mathrm{CRWI}_{3}^{i}\), \(\gamma _\mathrm{r}^{i}\), \(\gamma _{3}^{i}\))

As the material contains a third constituent phase, \(v_{0}^{i}\) can no longer be independently expressed from \(\gamma _\mathrm{r}^{i}\). From Eq. (9)

$$\begin{aligned} v_3^i =\frac{1}{\gamma _3^i }\cdot (\gamma _\mathrm{r}^i -\gamma _1 \cdot v_1^i -\gamma _2 \cdot v_2 ). \end{aligned}$$

By combining Eqs. (7) and (9)

$$\begin{aligned} v_0^i =1-v_1^i -v_2 -v_3^i =1-\left( {\frac{1}{\gamma _1 }-\frac{1}{\gamma _3^i }}\right) \cdot \gamma _1 \cdot v_1^i -\left( {\frac{1}{\gamma _2 }-\frac{1}{\gamma _3^i }}\right) \cdot \gamma _2 \cdot v_2 -\frac{\gamma _\mathrm{r}^i }{\gamma _3^i }. \end{aligned}$$
(40)

And following the definition of the weathering index [Eq. (37)]

$$\begin{aligned} v_0^i&= 1-\left( {\frac{1}{\gamma _1 }-\frac{1}{\gamma _3^i }}\right) \cdot ( {1-\mathrm{CRWI}_3 ^i})\cdot \gamma _1 \cdot v_1^f -\left( {\frac{1}{\gamma _2 }-\frac{1}{\gamma _3^i }}\right) \cdot \gamma _2 \cdot v_2 -\frac{\gamma _\mathrm{r}^i }{\gamma _3^i } \\&= 1-\left( {\frac{1}{\gamma _1 }-\frac{1}{\gamma _3^i }}\right) \cdot ( {1-\mathrm{CRWI}_3 ^i})\cdot {\Gamma }_1^f -\left( {\frac{1}{\gamma _2 }-\frac{1}{\gamma _3^i}}\right) \cdot {\Gamma }_2 -\frac{\gamma _\mathrm{r}^i }{\gamma _3^i }. \end{aligned}$$

1.3.3 A.3.3 Computation of \(m_{1}^{i}=f(\mathrm{CRWI}_{3}^{i},\gamma _\mathrm{r}^{i},\gamma _{3}^{i})\)

As the material contains a third constituent phase, \(m_{1}^{i}\) can no longer be independently expressed from \(\gamma _\mathrm{r}^{i}\). By combing Eqs. (10) and (37)

$$\begin{aligned} m_1^i =\frac{\gamma _1 \cdot v_1^i }{\gamma _\mathrm{r}^i }=\frac{( {1-\mathrm{CRWI}_3^i})\cdot \gamma _1 \cdot v_1^f }{\gamma _\mathrm{r}^i }=( {1-\mathrm{CRWI}_3^i})\cdot {\Gamma }_1^f \cdot \frac{1}{\gamma _\mathrm{r}^i }. \end{aligned}$$

1.4 A.4 Model 4

1.4.1 A.4.1 Computation of \(\mathrm{CRWI}_{4}^{i}\)

As the weathering is not isovolumetric due to compaction, \(V_\mathrm{tot}^{i}\) is no longer equal to \(V_\mathrm{tot}^{f}\), the definition and demonstration of CRWI\(_{4}^{i}\) are the same as that for CRWI\(_{2}^{i}\) (Appendix A.2).

1.4.2 A.4.2 Computation of \(v_{0}^{i}=f(\mathrm{CRWI}_{3}^{i},\gamma _\mathrm{r}^{i}, c^{i},\gamma _{3}^{i})\)

As with CRWI\(_{3}^{i}\), the material contains a third constituent phase, so \(v_{0}^{i}\) can no longer be independently expressed from \(\gamma _\mathrm{r}^{i}\).

By combining Eqs. (38) and (40)

$$\begin{aligned} v_0^i&= 1-\left( {\frac{1}{\gamma _1 }-\frac{1}{\gamma _3^i }}\right) \cdot \gamma _1 \cdot v_1^i -\left( {\frac{1}{\gamma _2 }-\frac{1}{\gamma _3^i }}\right) \cdot \gamma _2\cdot v_2^i -\frac{\gamma _\mathrm{r}^i }{\gamma _3^i } \\&= 1-\left( {\frac{1}{\gamma _1 }-\frac{1}{\gamma _3^i }}\right) \cdot \frac{( {1-\mathrm{CRWI}_4 ^i})}{(1-c^i)}\cdot {\Gamma }_1^f -\left( {\frac{1}{\gamma _2 }-\frac{1}{\gamma _3^i }}\right) \cdot \frac{1}{(1-c^i)}\cdot {\Gamma }_2^f -\frac{\gamma _\mathrm{r}^i }{\gamma _3^i }. \end{aligned}$$

1.4.3 A.4.3 Computation of \(m_{1}^{i}=f(\mathrm{CRWI}_{3}^{i},\gamma _\mathrm{r}^{i},c^{i},\gamma _{3}^{i})\)

As with CRWI\(_{3}^{i}\), the material contains a third constituent phase, so \(m_{1}^{i}\) can no longer be independently expressed from \(\gamma _\mathrm{r}^{i}\).

By combining Eqs. (10) and (38)

$$\begin{aligned} m_1^i =\frac{\gamma _1 \cdot v_1^i }{\gamma _\mathrm{r}^i }=\frac{( {1-\mathrm{CRWI}_4 ^i})}{(1-c^i)}\cdot \frac{\gamma _1 \cdot v_1^f }{\gamma _\mathrm{r}^i }=\frac{( {1-\mathrm{CRWI}_4 ^i})}{(1-c^i)}\cdot {\Gamma }_1^f \cdot \frac{1}{\gamma _\mathrm{r}^i }. \end{aligned}$$

1.5 A.5 Error on Model Without Gravitational Compaction

For a function \(f\) of \(n\) variables \(x_{i}\), the absolute error on \(f\) is given by

$$\begin{aligned} {\Delta }f( {x_i \vert i=1,\ldots ,n})=\sqrt{\mathop \sum \limits _{i=1}^n \left( {\frac{\partial f}{\partial x_i }}\right) ^2\cdot ( {{\Delta }x_i })^2}. \end{aligned}$$

The absolute error on \(v_{1}^{i}\) is computed from Eq. (10)

$$\begin{aligned} v_1^i =\frac{\gamma _\mathrm{r}^i \cdot m_1^i }{\gamma _1}. \end{aligned}$$

As \(\gamma _{1}\) is an imposed parameter, its error is considered to be zero.

The partial derivatives of \(v_{1}^{i}\) are

$$\begin{aligned}&\frac{\partial v_1^i }{\partial m_1^i }=\frac{\gamma _\mathrm{r}^i }{\gamma _1},\\&\frac{\partial v_1^i }{\partial \gamma _\mathrm{r}^i }=\frac{m_1^i }{\gamma _1}. \end{aligned}$$

Thus

$$\begin{aligned} {\Delta }v_1^i =\sqrt{\left( {\frac{\gamma _\mathrm{r}^i }{\gamma _1 }}\right) ^2\cdot \left( {{\Delta }m_1^i }\right) ^2+\left( {\frac{m_1^i }{\gamma _1 }}\right) ^2\cdot ( {{\Delta }\gamma _\mathrm{r}^i })^2}. \end{aligned}$$

The absolute error on CRWI\(^{i\,\mathrm{no}\,\mathrm{compaction}}\) is computed from Eq. (13)

$$\begin{aligned} \hbox {CRWI}^{i\,\mathrm{no}\,\mathrm{compaction}}=1-\frac{v_1^i }{v_1^f}. \end{aligned}$$

The partial derivatives of CRWI\(^{i\,\mathrm{no}\,\mathrm{compaction}}\) are

$$\begin{aligned}&\frac{\partial \mathrm{CRWI}^{i\,\mathrm{no}\,\mathrm{compaction}}}{\partial v_1^i}=-\frac{1}{v_1^f },\\&\frac{\partial \mathrm{CRWI}^{i\,\mathrm{no}\,\mathrm{compaction}}}{\partial \gamma _\mathrm{r}^i }=\frac{v_1^i}{v_1^{f2}}. \end{aligned}$$

Thus

$$\begin{aligned} {\Delta }\hbox {CRWI}^{i\,\mathrm{no}\,\mathrm{compaction}}=\sqrt{\left( {\frac{1}{v_1^f }}\right) ^2( {{\Delta }v_1^i })^2+\left( {\frac{v_1^i }{v_1^{f2}}}\right) ^2( {{\Delta }v_1^f })^2}. \end{aligned}$$

1.6 A.6 Error on Model with Gravitational Compaction

The absolute error on \(v_{2}^{i}\) is computed from Eq. (7)

$$\begin{aligned} v_2^i =1-v_0^i -v_1^i. \end{aligned}$$

The partial derivatives of \(v_{2}^{i}\) are

$$\begin{aligned}&\frac{\partial v_2^i }{\partial v_0^i }=-1,\\&\frac{\partial v_2^i }{\partial \gamma _\mathrm{r}^i }=-1. \end{aligned}$$

Thus

$$\begin{aligned} {\Delta }v_2^i =\sqrt{( {{\Delta }v_1^i })^2+( {{\Delta }v_0^i })^2}. \end{aligned}$$

The absolute error on \(c^{i}\) is computed from Eq. (18)

$$\begin{aligned} c^i=1-\frac{v_2^f }{v_2^i }. \end{aligned}$$

The partial derivatives of \(c^{i}\) are

$$\begin{aligned}&\frac{\partial c^i}{\partial v_2^f }=-\frac{1}{v_2^i },\\&\frac{\partial c^i}{\partial v_2^i }=\frac{v_2^f }{v_2^{i 2}}. \end{aligned}$$

Thus

$$\begin{aligned} {\Delta }c^i=\sqrt{\left( {\frac{1}{v_2^i }}\right) ^2( {{\Delta }v_2^f })^2+\left( {\frac{v_2^f }{v_2^{i 2}}}\right) ^2( {{\Delta }v_2^i })^2}. \end{aligned}$$

The absolute error on CRWI\(^{i\,\mathrm{compaction}}\) is computed from Eq. (17)

$$\begin{aligned} \hbox {CRWI}^{i\,\mathrm{compaction}}=1-\frac{v_1^i }{v_1^f }\cdot ( {1-c^i}). \end{aligned}$$

The partial derivatives of CRWI\(^{i\,\mathrm{compaction}}\) are

$$\begin{aligned}&\frac{\partial \mathrm{CRWI}^{i\,\mathrm{compaction}}}{\partial v_1^i }=-\frac{( {1-c^i})}{v_1^f },\\&\frac{\partial \mathrm{CRWI}^{i\,\mathrm{compaction}}}{\partial v_1^f }=\frac{v_1^i }{v_1^{f2}}\cdot ( {1-c^i}),\\&\frac{\partial \mathrm{CRWI}^{i\,\mathrm{compaction}}}{\partial c^i}=\frac{v_1^i }{v_1^f }. \end{aligned}$$

Thus

$$\begin{aligned}&{\Delta }\mathrm{CRWI}^{i\,\mathrm{compaction}}\\&\quad =\sqrt{\left( {\frac{( {1-c^i})}{v_1^f }}\right) ^2( {{\Delta }v_1^i })^2+\left( {\frac{v_1^i }{v_1^{f 2}}\cdot ( {1-c^i})}\right) ^2( {{\Delta }v_1^f })^2+\left( {\frac{v_1^i }{v_1^f }}\right) ^2( {{\Delta }c^i})^2}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubois, C., Deceuster, J., Kaufmann, O. et al. A New Method to Quantify Carbonate Rock Weathering. Math Geosci 47, 889–935 (2015). https://doi.org/10.1007/s11004-014-9581-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-014-9581-7

Keywords

Navigation