Skip to main content
Log in

Thermodynamic and Physical Properties of CaF2–(Al2O3–TiO2–MgO) System Slags for Electroslag Remelting of Inconel 18 Alloy

  • Published:
Materials Science Aims and scope

Physicochemical properties (viscosity, electrical conductivity, melting point, thermodynamic activity of oxygen) of (10 – 70)CaF2 – (0 – 60)Al2O3 – (0 – 30)TiO2 – (0 – 30)MgO slags system are studied. The required content of titanium in the Inconel 718 (0.65–1.15%) can be provided with the studied slags (49CaF2 – 30Al2O3 – 21TiO2 and 50CaF2 – 22Al2O3 – 18TiO2 – 10MgO) even if they contain 0.5 – 2% SiO2. The aluminum content can be adjusted by adding or pre–increasing its content in the remelting electrode. With temperature growth from 1500 to 2500 K, the equilibrium content of Ti in the metal decreases, and of Al – vice versa. The content of titanium at the initial level (1%) in the molten metal is provided at a temperature of 1700 K with 50CaF2 – 22Al2O3 – 18TiO2 – MgO slag. In comparison with 70CaF2 – 15Al2O3 – 15CaO slag, widely used for superalloy remelting, the studied compositions 49CaF2 – 30Al2O3 – 21TiO2, and 50CaF2 – 22Al2O3 – 18TiO2 – 10MgO will increase environmental friendliness of the remelting as a result of CaF2 content reduction by 20% at comparable values of crystallization temperature and conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. B. I. Medovar, Tsyrkulenko, Metallurgy of the Electroslag Process [in Russian], Naukova Dumka, Kyiv (1986).

    Google Scholar 

  2. L. Medovar, Z. H. Zhang, G. Stovpchenko, and L. Bredun, “Slag in the process of ESR: executive part and urgent tasks”, in: Abs. of the 9th Int. Conf. Molten Slags, Fluxes and Salts, Beijing, China (2012), p. 155.

  3. G. Stovpchenko, I. Goncharov, Ia. Gusiev, and L. Lisova, “Physico-chemical properties of the ESR slags system CaF2–Al2O3–(MgO, TiO2)”, J. of Achiev. in Mater. and Manufact. Eng., 89, Is. 2, 64–72 (2018); https://doi.org/10.5604/01.3001.0012.7110.

  4. B. I. Medovar, V. L. Shevtsov, V. M. Martyn, G. S. Marynskyi, Electroslag Crucible Melting and Casting of Metal [in Russian], Naukova Dumka, Kyiv (1988).

    Google Scholar 

  5. W. E. Duckworth, and G.Hoyle, Electro-slag Refining, Chapman and Hall Publ., (1969).

  6. Arh B., Podgornik B., and Burja J. “Electroslag remelting: a process overview,” Mater. and Techn., 50, Is. 6, 971–979 (2016); https://doi.org/10.17222/mit.2016.108.

  7. L. Gao, J. Fu, and C. X. Chen, Recent advances in understanding electroslag remelting metallurgy of superalloys, in: J. K. Tien et al. (editors), Superalloys, ASM, Metals Park, Ohio (1980), pp. 99–117.

  8. Ch.-Y. Chen, “Composition variation in Incoloy 800H alloy ingot during ESR process,” China Steel Technical Report, Is. 26, 7–12 (2013).

    Google Scholar 

  9. H. Halfa, M. Eissa, and A. Fathy, “Electroslag remelted ultra-high strength high ductility martensitic steel”, in: Proc. 22nd Int. Conf. on Metallurgy and Materials (May 15–17, 2013, Brno, Czech Republic), EU. TANGER, Ltd, 920130, pp. 1–7.

  10. S. Duan, X. Shi, M. Mao, W. Yang, S. Han, H. Guo, and J. Guo, “Investigation of the oxidation behaviour of Ti and Al in Inconel 718 superalloy during electroslag remelting,” Scientific Rep., 8, Is. 1, 1–14 (2018); https://doi.org/10.1038/s41598-018-23556-3.

  11. GOST 30756-2001 “Fluxes for electroslag technologies. General specifications”, Minsk (2004).

  12. Ltd “Special alloy”. Available at: http://specsplav-kr.com.ua/ (08.06.2021).

  13. Nikopol Ferroalloy plant. Fluxes, available at: http://nzf.com.ua/Default.aspx?id=55&sect=production&file_id= (10.05.2022).

  14. ESRFluxtechfacts, available at: https://www.americanflux.net/ (date of request 10.05.2022).

  15. HIGH-Tech, Inc. ESR Flux, available at: http://www.hightech-materials.com/Index/Product/contentlist/id/9.html (10.05.2022).

  16. Wacker Group: Electroflux – The Success Factor In Electroslag Remelting (ESR) available at: https://www.wacker.com/cms/media/publications/downloads/6321_EN.pdf (15.05.2020).

  17. W. V. Venal, H. J. Klein, R. R. Daniel, abd R.T.Gross: Method of Decarburization in ESR-Processing of Superalloys. US Patent 3982925A, 09 April 1975.

  18. M. J. Donachie, and S. J. Donachie, Superalloys: a Technical Guide, ASM Int. (2002).

  19. G. K. Bhat, and J. B. Tobias: Flux for Electroslag Consumable Remelting of Nickel Base Superalloys and Certain Iron Base Alloys. USPatent 3551137A, 10 January 1968.

  20. D. Wegman, “Investigation into critical parameters which determine the oxygen refining capability of the slag during electroslag remelting of alloy 718”, Theses and Dissertations, 1993.

  21. R. C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press., (2008).

  22. A. Balitskii, L. Ivaskevich, V. Mochulskyi, J. Eliasz, and O. Skolozdra, “Influence of high pressure and high temperature hydrogen on fracture toughness of Ni-containing steels and alloys”, Archive of Mech. Eng., 61, Is. 1, 129–138 (2014); https://doi.org/10.2478/meceng-2014-0007.

  23. O. I. Balyts’kyi, L. M. Ivas’kevych, V. M. Mochul’s’kyi, and O. M. Holiyan, “Influence of hydrogen on the crack resistance of 10Kh15N27T3V2MR steel,” Mater. Sci., 45, No. 2, 258–267 (2009); https://doi.org/10.1007/s11003-009-9184-5.

  24. A. Balitskii, and L. Ivaskevich, “Hydrogen effect on cumulation of failure, mechanical properties, and fracture toughness of Ni–Cr alloys,” Adv. in Mater. Sci. and Eng., 2019. Article number: 3680253 (2019); https://doi.org/10.1155/2019/3680253.

  25. A. I. Balyts’kyi, Yu. Kvasnyts’ka, L. M. Ivas’kevich, and H. P. Myal’nitsa, “Corrosion- and hydrogen-resistance of heat-resistant blade nickel-cobalt alloys”, Mater. Sci., 54, No. 2, 230–239 (2018); https://doi.org/10.1007/s11003-018-0178-z.

  26. G. Stovpchenko, L. Lisova, L. Medovar, G. Polishko, N. Brun, P. Bourson, V. Strelchuk, and I. Nasieka, “Electroslag remelting for low oxygen metal manufacturing” in: Proc. of 7th Int. Congr. on Sci. and Technol. of Steelmaking. The Challenge of Industry 4.0. (Venice, Italy 13–50 June, 2018), AIM, Assosiation Italiana di Metallurgia (2018), pp. 1–10.

  27. X. Huang, B. Li, Z. Liu, T. Jiang, Y. Chai, and X. Wu, “Oxygen transport behavior and characteristics of nonmetallic inclusions during vacuum electroslag remelting”, Vacuum, Is. 164, 114–120 (2019); https://doi.org/10.1016/j.vacuum.2019.03.014.

  28. Sh-Ch. Duan, X. Shi, F. Wang, M.-C. Zhang, Ye Sun, H.-J. Guo, and J. Guo, “A review of methodology development for controlling loss of alloying elements during the electroslag remelting process,” Metallurg. and Mater. Transact., Ser. B., 50, Is. 6, 3055–3071 (2019); https://doi.org/10.1007/s11663-019-01665-2.

  29. G. Stovpchenko, L. Medovar, Ia. Gusiev, and L. Lisova, “Novel physicochemical model of the electroslag remelting process in protective gasesin application to manufacturing of a large ingotof superalloys”, in: Liquid Metal Processing & Casting Conf. (Leoben, Austria, September 20–24, 2015), Institute of Physics Publ. (2015), pp. 219–224.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Stovpchenko.

Additional information

Translated from Fizyko–Khimichna Mekhanika Materialiv, Vol. 58, No. 4, pp. 63–72, July–August, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stovpchenko, G.P., Lisova, L.O., Medovar, L.B. et al. Thermodynamic and Physical Properties of CaF2–(Al2O3–TiO2–MgO) System Slags for Electroslag Remelting of Inconel 18 Alloy. Mater Sci 58, 494–504 (2023). https://doi.org/10.1007/s11003-023-00690-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-023-00690-6

Keywords

Navigation