Skip to main content
Log in

Influence of Calcium Phosphates on the Morphology and Properties of Polylactide Composites

  • Published:
Materials Science Aims and scope

We developed polylactide composite materials with calcium-containing fillers; in particular, calcium orthophosphate and calcium hydroorthophosphate. It is shown that the degree of crystallinity of filled and heat-treated polylactide materials increases. The elastoplastic properties of the created polylactide materials and their structure coefficient are determined by using the modulus-deformation method. We recorded the change in their modulus of deformation, modulus of elasticity, surface hardness, and thermomechanical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. J.-F. Agassant, P. Avenas, P. J. Carreau, B. Vergnes, and M. Vincent, Polymer Processing Principles and Modelling, Hanser, Munich (2017).

    Book  Google Scholar 

  2. A. Bouzouita, D. Notta-Cuvier, R. Delille, F. Lauro, J.-M. Raquez, and P. Dubois, “Design of toughened PLA based material for application in structures subjected to severe loading conditions. Part 2. Quasistatic tensile tests and dynamic mechanical analysis at ambient and moderately high temperature,” Polymer. Test., 57, 235–244 (2017).

    Article  CAS  Google Scholar 

  3. X. Hao, J. Kaschta, and D. W. Schubert, “Viscous and elastic properties of polylactide melts filled with silica particles: Effect of particle size and concentration,” Compos. Part B-Eng., 89, 44–53 (2016).

    Article  CAS  Google Scholar 

  4. I. Armentano, M. Dottori, E. Fortunati, S. Mattioli, and J. M. Kenny, “Biodegradable polymer matrix nanocomposites for tissue engineering: A review,” Polymer. Degrad. Stabil., 95, 2126–2146 (2010).

    Article  CAS  Google Scholar 

  5. R. Auras, B. Harte, and S. Selke, “An overview of polylactides as packaging materials,” Macromol. Biosci., 4, 835–864 (2004).

    Article  CAS  Google Scholar 

  6. M. S. Lopes, A. L. Jardini, and R. M. Filho, “Poly(lactic acid) production for tissue engineering applications,” Proc. Eng., 42, 1402–1413 (2012).

    Article  Google Scholar 

  7. A. N. Silva, T. Cipriano, H. M. da F. Thomé da Asilva, and G. Monteiro, “Thermal, rheological and morphological properties of poly(lactic acid) (PLA) and talc composites,” Polímeros, 24, 276–282 (2014).

  8. V. E. Levyts’kyi, А. S. Masyuk, Т. Bialopiotrowicz, L. M. Bilyi, and T. V. Humenets’kyi, “Morphology and properties of thermoplastic composites with modified silicate fillers,” Fiz.-Khim. Mekh. Mater., 54, No. 1, 53–58 (2018); English translation: Mater. Sci., 54, No. 1, 48–54 (2018).

  9. X. Liu, T. Wang, L. C. Chow, M. Yang, and J. W. Mitchell, “Effects of inorganic fillers on the thermal and mechanical properties of poly(lactic acid),” Int. J. Polymer. Sci., Article ID 827028 (2014).

  10. V. E. Levytskyi, A. S. Маsyuk, L. М. Bilyi, T. Bialopiotrowicz, T. V. Humenetskyi, and A. М. Shybanova, “Influence of silicate nucleation agent modified with polyvinylpyrrolidone on the morphology and properties of polypropylene,” Fiz.-Khim. Mekh. Mater., 55, No. 4, 88–94 (2019); English translation: Mater. Sci., 55, No. 4, 555–562 (2020).

  11. É. Kh. Liiv and A. D. Mashegirov, Procedure of Determination of the Physicomechanical Properties of Polymeric Compositions by Indentation with a Conic Indenter [in Russian], Ést. NIITNI, Tallin (1983).

    Google Scholar 

  12. V. E. Levytskyi, А. S. Masyuk, D. S. Samoiliuk, L. M. Bilyi, and T. V. Humenetskyi, “Morphology and properties of polymer-silicate composites and polyester materials based on them,” Fiz.-Khim. Mekh. Mater., 52, No. 1, 21–27 (2016); English translation: Mater. Sci., 52, No. 1, 17–24 (2016).

  13. Y. Ikada, K. Jamshidi, H. Tsuji, and S. H. Hyon, “Stereocomplex formation between enantiomeric poly(lactides),” Macromolecules, 20, 904–906 (1987).

    Article  CAS  Google Scholar 

  14. V. Levytskyi, V. Kochubei, and A. Gancho, “Influence of the silicate modifier nature on the structure and properties of polycaproamide,” Chem. Chem. Technol., 7, 169–173 (2013).

    Article  Google Scholar 

  15. V. Levytskyi, A. Masiuk, D. Katruk, R. Kuzioła, M. Bratychak, N. Chopyk, and U. Khromyak, “Influence of polymer-silicate nucleator on the structure and properties of polyamide 6,” Chem. Chem. Technol., 12, 53–57 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. М. Bilyi.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 56, No. 6, pp. 132–138, November–December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masyuk, А.S., Levytskyi, V.E., Kysil, K.V. et al. Influence of Calcium Phosphates on the Morphology and Properties of Polylactide Composites. Mater Sci 56, 870–876 (2021). https://doi.org/10.1007/s11003-021-00506-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-021-00506-5

Keywords

Navigation