Skip to main content
Log in

Deposition of Copper, Silver, and Nickel on Aluminum by Galvanic Replacement

  • Published:
Materials Science Aims and scope

We present the results of investigation of the galvanic replacement of copper, silver, and nickel on the surface of aluminum in solutions of complexes: copper from pyrophosphate solution [Cu(P2O7)2]6– ; nickel from ammoniate solution [Ni(NH3)6]2+ , and silver from ammoniate [Ag(NH3)2]+ and thiocarbamide [Ag(SC(NH2)2)2]+ solutions. It is shown that the concentration of complex ions, their stability, and the time of galvanic replacement are the main factors affecting the morphology of deposits and the geometry of metal particles. It is shown that, as the concentration of complexes in solutions decreases, their stability increases, and the duration of the process decreases, the size of particles of the reduced metal decreases from ≈ 1 μm down to ~ 300–70 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. O. Ya. Dobrovets’ka, O. I. Kuntyi, G. I. Zozulya, I. V. Saldan, and O. V. Reshetnyak, “Galvanic deposition of gold and palladium on magnesium by the method of substitution,” Fiz.-Khim. Mekh. Mater., 51, No. 3, 112–116 (2015); English translation: Mater. Sci., 51, No. 3, 418–423 (2015).

  2. O. Kuntyi, G. Zozulya, I. Saldan, V. Kree, S. Korniy, and B. Stelmakhovych, “Nature of the silver precipitation obtained by cementation from thiosulphate solutions,” Cent. Eur. J. Chem., 9, 180–184 (2011).

    Google Scholar 

  3. R. Kang, J. Liang, B. Liu, and Z. Peng, “Copper galvanic replacement on aluminum from a choline chloride-based ionic liquid: sseffect of thiourea,” J. Electrochem. Soc., 161, D534–D539 (2014).

    Article  Google Scholar 

  4. R. Kang, J. Liang, Z. Qiao, and Z. Peng, “Growth kinetics of copper replacement deposition on Al and Al–Si from a deep eutectic solvent,” J. Electrochem. Soc., 162, D515–D519 (2015).

    Article  Google Scholar 

  5. W. Ye, Y. Chen, F. Zhou, C. Wang, and Y. Li, “Fluoride-assisted galvanic replacement synthesis of Ag and Au dendrites on aluminum foil with enhanced SERS and catalytic activities,” J. Mater. Chem., 22, 18327–18334 (2012).

    Article  Google Scholar 

  6. D. A. Brevnov, T. S. Olson, G. P. López, and P. Atanassov, “Electroless deposition of silver by galvanic displacement on aluminum alloyed with copper,” J. Phys. Chem. B, 108, 17531–17536 (2004).

    Article  Google Scholar 

  7. J. Fu, W. Ye, and C. Wang, “Facile synthesis of Ag dendrites on Al foil via galvanic replacement reaction with [Ag(NH3)2] Cl for ssultrasensitive SERS detecting of biomolecules,” Mater. Chem. Phys., 141, 107–113 (2013).

    Article  Google Scholar 

  8. T. Wu, L. Y. Myung, M. Zhang, K.-H. Lee, Y. L. Lee, H.-R. Lim, B. S. Kim, Y.-H. Choa, and N. V. Myung, “Size controlled synthesis of tellurium nanorices by galvanic displacement reaction of aluminum,” Electrochim. Acta, 176, 1382–1392 (2015).

    Article  Google Scholar 

  9. J. Georgieva, E. Valova, I. Mintsouli, S. Sotiropoulos, S. Armyanov, A. Kakaroglou, A. Hubin, O. Steenhaut, and J. Dille, “Carbonsupported Pt(Cu) electrocatalysts for methanol oxidation prepared by Cu electroless deposition and its galvanic replacement by Pt,” J. Appl. Electrochem., 44, 215–224 (2014).

    Article  Google Scholar 

  10. A. Ott, S. K. Bhargava, and A. P. O’Mullane, “A study of the galvanic replacement reaction at surfaces and the role of lateral charge propagation,” Surf. Sci., 606, L5–L9 (2012).

    Article  Google Scholar 

  11. T. Ego, T. Hagihara, Y. Morii, N. Fukumuro, S. Yae, and H. Matsuda, “AFM analysis for initial stage of electroless displacement deposition of silver on silicon surface,” ECS Trans., 50, 143–153 (2013).

    Article  Google Scholar 

  12. L. Scudiero, A. Fasasi, P. R. Griffiths, “Characterization of a controlled electroless deposition of copper thin film on germanium SSand silicon surfaces,” Appl. Surf. Sci., 7, 4422–4427 (2011).

    Article  Google Scholar 

  13. O. I. Kuntyi, Electrochemistry and Morphology of Dispersed Metals [in Ukrainian], “L’vivs’ka Politekhnika” National University, Lviv (2008).

  14. K. Clauwaert, K. Binnemans, E. Matthijs, and J. Fransaer, “Electrochemical studies of the electrodeposition of copper–zinc–tin alloys from pyrophosphate electrolytes followed by selenization for CZTSe photovoltaic cells,” Electrochim. Acta, 188, 344–355 (2016).

    Article  Google Scholar 

  15. D. Dobos, Electrochemical Data: A Handbook for Electrochemists in Industry and Universities, Elsevier, New York (1975).

    Google Scholar 

  16. M. E. Díaz, A. R. Alonso, I. González, and G. T. Lapidus, “Influence of oxygen reduction and hydrogen evolution in the gold and silver direct electrodeposition process from thiourea solutions in a filter press-type reactor,” Hydrometallurgy, 129130, 90–96 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to О. І. Kuntyi.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 53, No. 4, pp. 60–65, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuntyi, О.І., Zozulya, H.І., Dobrovets’ka, О.Y. et al. Deposition of Copper, Silver, and Nickel on Aluminum by Galvanic Replacement. Mater Sci 53, 488–494 (2018). https://doi.org/10.1007/s11003-018-0099-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-018-0099-x

Keywords

Navigation