Skip to main content
Log in

Palynostratigraphy indication of the Pliocene–Pleistocene boundary in Hupo Basin of the East Sea, offshore Korea

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

A palynological analysis was carried out for the first time on sediments from Hupo Basin, East Sea, offshore Korea, to locate the Pliocene–Pleistocene boundary and thus determine the depositional age of this stratigraphic unit. Core 19ESDP-101, taken from Hupo Basin, yielded diverse, abundant to common pollen and dinocysts. Age-diagnostic palynomorphs were present in certain core intervals (Zone I, depths 120–63.96 mbsf). However, those age indicators were dark brown, heavily broken representatives that appeared together with poorly sorted, opaque, dark phytoclasts in the lower part of Zone II (63.96–38.76 mbsf), and they were considered to have been recycled from reworked late Pliocene strata due to contour currents during the transgression. Biostratigraphically meaningful taxa were the pollen Carya, Liquidambar, and Fagus and the dinocysts Filisphaera filifera subsp. pilosa and Spiniferites pachyderma. The latest stratigraphic occurrence of these pollen taxa in northeast Asia is the Late Pliocene, and that of the dinocysts is the Late Pliocene across a wide range of aquatic areas, especially in the Pacific. The last appearance datum of the age indicators in this study suggested 63.96 mbsf (top boundary of Zone I) as the Pliocene–Pleistocene boundary in core 19ESDP-101.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Plate 1
Plate 2
Plate 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Batten DJ (1996) Palynofacies and palaeoenvironmental interpretation. In: McGregor DC (ed) Palynology: principles and applications. American Association of Stratigraphic Palynologists Foundation, pp 1011–1064

    Google Scholar 

  • Bennike O, Abrahamsen N, Bak M et al (2002) A multi-proxy study of Pliocene sediments from Île de France, North-East Greenland. Palaeogeogr Palaeoclimatol Palaeoecol 186:1–23. https://doi.org/10.1016/S0031-0182(02)00439-X

    Article  Google Scholar 

  • Bong PY (1985) Palynology of the Neogene Strata in the Pohang Sedimentary Basin. Ph.D. Thesis. Seoul National University

    Google Scholar 

  • Bujak JP (1984) Cenozoic dinoflagellate cysts and acritarchs from the Bering Sea and northern North Pacific, DSDP Leg 19. Micropaleontology 30:180–212

    Article  Google Scholar 

  • Byun HS (1995) Cenozoic dinoflagellate cysts from the pohang Basin and the southern margin of the Ulleung Basin, Korea. Ph.D. Thesis. Chungnam National University

    Google Scholar 

  • Chang N-K (1986) Illustrated Flora and Fauna of Korea, vol 29. Kukjeong Gyogwaseo Press, Seoul, Pollen

    Google Scholar 

  • Chang N-K, Rim YD (1979) Morphological studies on the pollen of flowering plants in Korea. Seoul National University Press, Seoul

    Google Scholar 

  • Choi DK, Bong PY (1986) Neogene palynomorphs from lignite beds of Bugpyeong and Yeonghae areas, Korea. J Paleontol Soc Korea 2:1–17

    Google Scholar 

  • Chun JH, Han SJ, Cheong DK et al (1997) Volcanic processes of the Ulleung-II tephra (Ulleung-Oki ash) erupted from the Ulleung Island. Ocean Res 19:275–283

    Google Scholar 

  • Chung C-H, Koh Y-K (2005) Palynostratigraphic and palaeoclimatic investigations on the Miocene deposits in the Pohang area, South Korea. Rev Palaeobot Palynol 135:1–11. https://doi.org/10.1016/j.revpalbo.2005.02.002

    Article  Google Scholar 

  • Combaz A (1964) Les palynofaciès. Rev Micropaléontologie 7:205–218

    Google Scholar 

  • de Schepper S, Head MJ (2009) Pliocene and Pleistocene dinoflagellate cyst and acritarch zonation of DSDP hole 610a, Eastern North Atlantic. Palynology 33:179–218. https://doi.org/10.1080/01916122.2009.9989673

    Article  Google Scholar 

  • de Castro S, Hernández-Molina FJ, Rodríguez-Tovar FJ et al (2020) Contourites and bottom current reworked sands: Bed facies model and implications. Mar Geol 428:106267. https://doi.org/10.1016/j.margeo.2020.106267

    Article  Google Scholar 

  • de Weger W, Hernández-Molina FJ, Miguez-Salas O et al (2021) Contourite depositional system after the exit of a strait: Case study from the late Miocene South Rifian Corridor, Morocco. Sedimentology 68:2996–3032. https://doi.org/10.1111/sed.12882

    Article  Google Scholar 

  • Eshet Y, Druckman Y, Cousminer HL et al (1988) Reworked palynomorphs and their use in the determination of sedimentary cycles. Geology 16:662. https://doi.org/10.1130/0091-7613(1988)016%3c0662:RPATUI%3e2.3.CO;2

    Article  Google Scholar 

  • Grimm E (2011) Tilia 1.7.16 Software. Illinois State Museum, Research and Collection Center, Springfield, II

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the triassic. Science 235:1156–1167. https://doi.org/10.1126/science.235.4793.1156

    Article  Google Scholar 

  • Hayashi R, Sagawa T, Irino T, Tada R (2021) Orbital-scale vegetation-ocean-atmosphere linkages in western Japan during the last 550 ka based on a pollen record from the IODP site U1427 in the Japan Sea. Quat Sci Rev 267:107103. https://doi.org/10.1016/j.quascirev.2021.107103

    Article  Google Scholar 

  • Head MJ (1994) Morphology and paleoenvironmental significance of the cenozoic dinoflagellate genera tectatodinium and habibacysta. Micropaleontology 40:289. https://doi.org/10.2307/1485937

    Article  Google Scholar 

  • Head MJ (1996) Late Cenozoic dinoflagellates from the royal society borehole at Ludham, Norfolk, Eastern England. J Paleontol 70:543–570. https://doi.org/10.1017/S0022336000023532

    Article  Google Scholar 

  • Head MJ, Edwards LE, Garrett JK et al (1993) A forum on Neogene and quaternary dinoflagellate cysts: the edited transcript of a round table discussion held at the third workshop on Neogene and Quaternary dinoflagellates; with taxonomic appendix. Palynology 17:201–239. https://doi.org/10.1080/01916122.1993.9989428

    Article  Google Scholar 

  • Head MJ, Riding JB, Eidvin T, Chadwick RA (2004) Palynological and foraminiferal biostratigraphy of (Upper Pliocene) Nordland Group mudstones at Sleipner, northern North Sea. Mar Pet Geol 21:277–297. https://doi.org/10.1016/j.marpetgeo.2003.12.002

    Article  Google Scholar 

  • Hennissen JAI, Head MJ, De Schepper S, Groeneveld J (2017) Dinoflagellate cyst paleoecology during the Pliocene-Pleistocene climatic transition in the North Atlantic. Palaeogeogr Palaeoclimatol Palaeoecol 470:81–108. https://doi.org/10.1016/j.palaeo.2016.12.023

    Article  Google Scholar 

  • Heusser LE (1992) Preliminary Results of High-Resolution Pollen Analyses of Selected Pleistocene Intervals from Holes 798A, 798B, and 798C. In: Proceedings of the Ocean Drilling Program, 127/128 Scientific Results. Ocean Drilling Program, pp 317–324

  • Hong SW, Yoo DG, Lee GS, Kim JC, Yi S, Kim GY, Bahk JJ, Yu S (2022) Late Pliocene to Quaternary sedimentary facies and stratigraphy of shallow-water contourite deposits in the Hupo Basin, East Sea of Korea. Mar Geo Res

  • KIGAM (2021) Study on submarine active faults and evaluation of possibility of submarine earthquakes in the southern part of the East Sea, Korea. Report of Korea Institute of Geoscience and Mineral Resources (20190016), Daejeon

  • Kim BK (1970) A study on the Neogene Tertiary deposits in Korea. J Geol Soc Korea Soc Korea 6:77–96

    Google Scholar 

  • Kim Y, Yi S, Kim G, Lee E (2017) Late Miocene paleoceanography of the Eastern South Korea Plateau, East Sea, inferred from the palynofacies and dinoflagellates of U1430 core, IODP Exp. 346. J Geol Soc Korea 53:645–656. https://doi.org/10.14770/jgsk.2017.53.5.645

    Article  Google Scholar 

  • Kim Y, Yi S, Kim G-Y et al (2019) Palynological study of paleoclimate and paleoceanographic changes in the Eastern South Korea Plateau, East Sea, during the Plio-Pleistocene climate transition. Palaeogeogr Palaeoclimatol Palaeoecol 520:18–29. https://doi.org/10.1016/j.palaeo.2019.01.021

    Article  Google Scholar 

  • Lee JH, Cho HJ, Hur TC (2006) Spatial distribution and vegetation-environment relationship of forest vegetation in Ulleung Island, Korea. J Ecol F Biol 29:521–529. https://doi.org/10.5141/JEFB.2006.29.6.521

    Article  Google Scholar 

  • Liu G, Leopold EB, Liu Y et al (2002) Palynological record of Pliocene climate events in North China. Rev Palaeobot Palynol 119:335–340. https://doi.org/10.1016/S0034-6667(01)00125-7

    Article  Google Scholar 

  • Liu H, Xing Q, Ji Z et al (2003) An outline of Quaternary development of Fagus forest in China: palynological and ecological perspectives. Flora—Morphol Distrib Funct Ecol Plants 198:249–259. https://doi.org/10.1078/0367-2530-00098

    Article  Google Scholar 

  • Maher LJ (1981) Statistics for microfossil concentration measurements employing samples spiked with marker grains. Rev Palaeobot Palynol 32:153–191. https://doi.org/10.1016/0034-6667(81)90002-6

    Article  Google Scholar 

  • Marret F, Zonneveld KAF (2003) Atlas of modern organic-walled dinoflagellate cyst distribution. Rev Palaeobot Palynol 125:1–200. https://doi.org/10.1016/S0034-6667(02)00229-4

    Article  Google Scholar 

  • Matsuoka K (1983) Late Cenozoic dinoflagellates and Acritarchs in the Niigata District, Central Japan. Palaeontogr Abteilung B 187:89–154

    Google Scholar 

  • Matsuoka K, Bujak JP, Shimazaki T (1987) Late Cenozoic dinoflagellate cyst biostratigraphy from the west coast of northern Japan. Micropaleontology 33:214–229

    Article  Google Scholar 

  • Matsuoka K, Bujak JP (1988) Cenozoic dinoflagellate cysts from the Navarin Basin, Norton Sound and St. George Basin, Bering Sea. Bulletin of Faculty of Liberal Arts, Nagasak University (Natural Science), Nagasaki

  • Matthiessen J, Brenner W (1996) Dinoflagellate Cyst Ecostratigraphy of Pliocene–Pleistocene Sediments from the Yermak Plateau (Arctic Ocean, Hole 911A). In: Proceedings of the Ocean Drilling Program, 151 Scientific Results. Ocean Drilling Program

  • McCarthy F, Findlay D, Little M (2004) The micropaleontological character of anomalous calcareous sediments of late Pliocene through early Pleistocene age below the CCD in the northwestern North Pacific Ocean. Palaeogeogr Palaeoclimatol Palaeoecol 215:1–15. https://doi.org/10.1016/S0031-0182(04)00402-X

    Article  Google Scholar 

  • McMinn A (1992) Pliocene through Holocene dinoflagellate cyst biostratigraphy of the Gippsland Basin, Australia. In: Head MJ, Wrenn JH (eds) Neogene and quaternary dinoflagellate cysts and acritarchs. America Association of Stratigraphic Palynologists Foundation, Texas, pp 147–161

    Google Scholar 

  • Miller KG, Kominz MA, Browning JV et al (2005) The phanerozoic record of global sea-level change. Science 310:1293–1298. https://doi.org/10.1126/science.1116412

    Article  Google Scholar 

  • Miyoshi N, Fujiki T, Morita Y (1999) Palynology of a 250-m core from Lake Biwa: a 430,000-year record of glacial–interglacial vegetation change in Japan. Rev Palaeobot Palynol 104:267–283. https://doi.org/10.1016/S0034-6667(98)00058-X

    Article  Google Scholar 

  • Moore PD, Webb JA, Collison ME (1991) Pollen analysis, 2nd edn. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Mudie PJ (1989) Palynology and Dinocyst Biostratigraphy of the Late Miocene to Pleistocene, Norwegian Sea: ODP Leg 104, Sites 642 to 644. In: Proceedings of the Ocean Drilling Program, 104 Scientific Results. Ocean Drilling Program, pp 587–610

  • Nakamura J (1980) Diagnostic characters of pollen grains of Japan Part II. Spec Publicait Osaka Museum, Nat Hist 12:1–92

    Google Scholar 

  • Park JB (1995) Paleopalynology of the Changgi Group (Tertiary), Keumgwangdong and Youngam Areas, Korea. Ph.D. Thesis. Seoul National University

    Google Scholar 

  • Park Y, Kang N, Yi B et al (2021) Tectonostratigraphic framework in the eastern Korean continental margin, East Sea: implication for evolution of the Hupo Basin. Basin Res. https://doi.org/10.1111/bre.12641

    Article  Google Scholar 

  • PEDCO (1995) Micropaleontology, petroleum geochemistry and petrology of Gorae 1–1, offshore Korea Block VI-1. Report of Korea Institute of Geoscience and Mineral Resources

  • Powell AJ (1992) A stratigraphic index of dinoflagellate cysts. British Micropaleontological Society Publication Series, Chapman & Hall, London

  • Ramírez-Valencia V, Paez-Reyes M, Salgado J et al (2021) Distribution of organic-walled dinoflagellate cysts in surface sediments of the southern Caribbean and the eastern tropical Pacific and its environmental implications. Mar Micropaleontol 167:102000. https://doi.org/10.1016/j.marmicro.2021.102000

    Article  Google Scholar 

  • Rebesco M, Hernández-Molina FJ, Van Rooij D, Wåhlin A (2014) Contourites and associated sediments controlled by deep-water circulation processes: state-of-the-art and future considerations. Mar Geol 352:111–154. https://doi.org/10.1016/j.margeo.2014.03.011

    Article  Google Scholar 

  • Sebag D, Copard Y, Di-Giovanni C et al (2006) Palynofacies as useful tool to study origins and transfers of particulate organic matter in recent terrestrial environments: synopsis and prospects. Earth-Science Rev 79:241–259. https://doi.org/10.1016/j.earscirev.2006.07.005

    Article  Google Scholar 

  • Song ZC, Guan XT, Li ZR et al (1985) A study of Cenozoic palynology of the Longjing structural area in the Shelf Basin of the East China Sea region. Anhui Science and Technology Publishing House

    Google Scholar 

  • Starling RN, Crowder A (1980) Pollen in the salmon river system, Ontario, Canada. Rev Palaeobot Palynol 31:311–334. https://doi.org/10.1016/0034-6667(80)90033-0

    Article  Google Scholar 

  • Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621

    Google Scholar 

  • Tai A (1966) Pollen analysis of the core (OD-1) in Osaka City—research on younger Cenozoic strata in Kinki Province, Part V. Geol Sci 83:25–29

    Google Scholar 

  • Traverse A (1988) Paleopalynology. Unwin Hyman, Boston

    Google Scholar 

  • Tyson RV (1995) Sedimentary organic matter. Springer, Netherlands, Dordrecht

    Book  Google Scholar 

  • Vernal de A, Mudie PJ (1989) Pliocene and Pleistocene Palynostratigraphy at ODP Sites 646 and 647, Eastern and Southern Labrador Sea. In: Proceedings of the Ocean Drilling Program, 105 Scientific Results. Ocean Drilling Program, pp 401–422

  • Wessel P, Luis JF, Uieda L et al (2019) The generic mapping tools version 6. Geochem, Geophys Geosystems 20:5556–5564. https://doi.org/10.1029/2019GC008515

    Article  Google Scholar 

  • Williams GL, Brinkhuis H, Pearce MA, et al (2004) Southern Ocean and Global Dinoflagellate Cyst Events Compared: Index Events for the Late Cretaceous–Neogene. In: Proceedings of the Ocean Drilling Program, 189 Scientific Results. Ocean Drilling Program

  • Yamanoi T (1978) Neogene pollen stratigraphy of the Oga Peninsula, Northeast Honshu, Japan. J Geol Soc Japan 84:69-86_1. https://doi.org/10.5575/geosoc.84.69

    Article  Google Scholar 

  • Yamanoi T (1989) Neogene palynological zones and events in Japan. In: Proceedings of International Symposium on Pacific Neogene Continent and Marine Events. Nanjing University Press, Nangjing, pp 81–90

  • Yamanoi T (1992) Miocene Pollen Stratigraphy of Leg 127 in the Japan Sea and Comparison with the Standard Neogene Pollen Floras of Northeast Japan. In: Proceedings of the Ocean Drilling Program, 127/128 Scientific Results, Proceeding. Ocean Drilling Program, pp 130–132

  • Yi S, Yi S, Batten DJ et al (2003) Cretaceous and Cenozoic non-marine deposits of the Northern South Yellow Sea Basin, offshore western Korea: palynostratigraphy and palaeoenvironments. Palaeogeogr Palaeoclimatol Palaeoecol 191:15–44. https://doi.org/10.1016/S0031-0182(02)00637-5

    Article  Google Scholar 

  • Yi S, Bahk J-J, Jia H, Yoo D-G (2012) Pliocene-Pleistocene boundary determination in hemipelagic sediment from the Ulleung Basin (East Sea, offshore Korea) inferred from terrigenous and marine palynofloras. Rev Palaeobot Palynol 181:54–63. https://doi.org/10.1016/j.revpalbo.2012.05.002

    Article  Google Scholar 

  • Yi S, Bong P-Y, Lee M-S (2004) Pollen and spores of South Korea. J Paleontol Soc Korea Spec Pulication 431–458

  • Yoon SH, Sohn YK, Chough SK (2014) Tectonic, sedimentary, and volcanic evolution of a back-arc basin in the East Sea (Sea of Japan). Mar Geol 352:70–88. https://doi.org/10.1016/j.margeo.2014.03.004

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the “Study on submarine active faults and evaluation of possible submarine earthquakes in the southern part of the East Sea, Korea (NP2018-018)” of the KIGAM, funded by the Ministry of Ocean and Fisheries of Korea, and also in part by basic research grants (GP2020-003) from the KIGAM, funded by the Ministry of Science and ICT of Korea. This paper was prepared for the special issue entitled “Geological implications for submarine geohazards, Ulleung Basin, East Sea”. We sincerely thank Dr. Jaume Llopart, Guest Editor, and the anonymous reviewers for their constructive comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangheon Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, S., Hong, SW., Yoo, DG. et al. Palynostratigraphy indication of the Pliocene–Pleistocene boundary in Hupo Basin of the East Sea, offshore Korea. Mar Geophys Res 43, 28 (2022). https://doi.org/10.1007/s11001-022-09490-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11001-022-09490-0

Keywords

Navigation