Skip to main content
Log in

Estimation of seafloor reflectivity in shallow water based on seismic data of sparker sources

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

Seafloor acoustic reflectivity is fundamental for both underwater detection and ocean acoustic field prediction, especially in shallow-water offshore regions. This paper presents a procedure to estimate the seafloor reflectivity in shallow water based on the direct wave and seafloor reflection data from single-channel seismic records of sparker sources. We apply the procedure to a seismic line acquired in the western part of the Taiwan Strait. To resolve the uncertainty in the inversion results, we implement strict quality control on the data obtained from seismic records and utilized for the inversion calculation. According to the preprocessing results, it is recommended to exclude the bubble pulses and their surface reflections, which are unstable and act as noise, from the estimated source wavelet applied to the inversion calculation. The calculation results show a significant level of directional variation in the acoustic energy radiated from the sparker source, and this variation should be considered in the calculation of seafloor reflectivity. In this work, the seafloor reflectivity is calibrated with relatively stable calculated values that correspond to known types of sediment, and the directivity constant of a sparker source is estimated (≈ 0.2), which is defined as the amplitude ratio between horizontally propagating seismic waves and vertically propagating seismic waves. The resulting relationship between the seafloor reflectivity and the sediment type is consistent with those of previous research, indicating the feasibility of our procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Breslau LR (1964) An acoustic surveying technique for determining sea-floor sediments. 939–950

  • Bull JM, Quinn R, Dix JK (1998) Reflection coefficient calculation from marine high resolution seismic reflection (Chirp) data and application to an archaeological case study. Mar Geophys Res 20:1–11

    Article  Google Scholar 

  • Buogo S, Plocek J, Vokurka K (2009) Efficiency of energy conversion in underwater spark discharges and associated bubble oscillations: experimental results. Acta Acust United Acust 95:46–59

    Article  Google Scholar 

  • Chiu LYS, Chang A, Lin Y-T et al (2015) Estimating geoacoustic properties of surficial sediments in the North Mien-Hua canyon region with a Chirp sonar profiler. IEEE J Ocean Eng 40:222–236

    Article  Google Scholar 

  • Chotiros NP, Lyons AP, Osler J et al (2002) Normal incidence reflection loss from a sandy sediment. J Acoust Soc Am 112:1831–1841

    Article  Google Scholar 

  • Cook JA, Gleeson AM, Roberts RM et al (1997) A spark-generated bubble model with semi-empirical mass transport. J Acoust Soc Am 101:1908–1920

    Article  Google Scholar 

  • Dettmer J, Dosso SE, Holland CW (2007) Uncertainty estimation in seismo-acoustic reflection travel time inversion. J Acoust Soc Am 122:161–176

    Article  Google Scholar 

  • Dettmer J, Dosso SE, Holland CW (2009) Model selection and Bayesian inference for high-resolution seabed reflection inversion. J Acoust Soc Am 125:706–716

    Article  Google Scholar 

  • Dettmer J, Holland CW, Dosso SE (2013) Transdimensional uncertainty estimation for dispersive seabed sediments. Geophysics 78:WB63–WB76

    Article  Google Scholar 

  • Duchesne MJ, Bellefleur G, Galbraith M et al (2007) Strategies for waveform processing in sparker data. Mar Geophys Res 28:153–164

    Article  Google Scholar 

  • Endler M, Endler R, Bobertz B et al (2015) Linkage between acoustic parameters and seabed sediment properties in the south-western Baltic Sea. Geo-Mar Lett 35:145–160

    Article  Google Scholar 

  • Faas RW (1969) Analysis of the relationship between acoustic reflectivity and sediment porosity. Geophysics 34:546–553

    Article  Google Scholar 

  • Fang J, Chen J, Wang A et al (2012) The distribution characteristics of grain size and mineral of surface sediment in the Taiwan Strait. Acta Oceanol Sin 34:91–99

    Google Scholar 

  • Hamilton EL (1970) Reflection coefficients and bottom losses at normal incidence computed from pacific sediment properties. Geophysics 35:995–1004

    Article  Google Scholar 

  • Hastrup OF (1969) Digital analysis of acoustic reflectivity in the Tyrrhenian Abyssal Plain. J Acoust Soc Am 47:181–190

    Article  Google Scholar 

  • Heard GJ (1997) Bottom reflection coefficient measurement and geoacoustic inversion at the continental margin near Vancouver Island with the aid of spiking filters. J Acoust Soc Am 101:1953–1960

    Article  Google Scholar 

  • Holland CW, Dosso SE (2013) Mid frequency shallow water fine-grained sediment attenuation measurements. J Acoust Soc Am 134:131–143

    Article  Google Scholar 

  • Hou Z, Chen Z, Wang J et al (2018) Acoustic impedance properties of seafloor sediments off the coast of Southeastern Hainan, South China Sea. J Asian Earth Sci 154:1–7

    Article  Google Scholar 

  • Huang Y, Yan H, Wang B et al (2014) The electro-acoustic transition process of pulsed corona discharge in conductive water. J Phys D 47:255204–255201

    Article  Google Scholar 

  • Huang Y, Zhang L, Yan H et al (2016) Experimental study of the electric pulse-width effect on the acoustic pulse of a plasma sparker. IEEE J Oceanic Eng 41:724–730

    Article  Google Scholar 

  • Huang Y, Zhang L, Zhang X et al (2015) Electro-acoustic process study of plasma sparker under different water depth. IEEE J Oceanic Eng 40:947–956

    Article  Google Scholar 

  • Jackson DR, Richardson MD (2007) High-frequency seafloor acoustics. Springer, New York

    Book  Google Scholar 

  • Kibblewhite AC (1989) Attenuation of sound in marine sediments: A review with emphasis on new low-frequency data. J Acoust Soc Am 86:716–738

    Article  Google Scholar 

  • Kim DC, Kim GY, Yi HI et al (2012) Geoacoustic provinces of the South Sea shelf off Korea. Quatern Int 263:139–147

    Article  Google Scholar 

  • LeBlanc LR, Mayer L, Rufino M et al (1992) Marine sediment classification using the chirp sonar. J Acoust Soc Am 91:107–115

    Article  Google Scholar 

  • Liu JP, Liu CS, Xu KH et al (2008) Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Mar Geol 256:65–76

    Article  Google Scholar 

  • Liu Y, Liu X, Ning H (2016) Analysis and improvement for a linearized seafloor elastic parameter inversion method. J Appl Geophys 128:110–114

    Article  Google Scholar 

  • Liu Y, Zhong Y, Liu K et al (2020) Seafloor elastic-parameter estimation based on a regularized AVO inversion method. Mar Geophys Res 41:1–11

    Article  Google Scholar 

  • Parrott DR, Dodds DJ, King LH et al (1980) Measurement and evaluation of the acoustic reflectivity of the sea floor. Can J Earth Sci 17:722–737

    Article  Google Scholar 

  • Rakotonarivo S, Legris M, Desmare R et al (2011) Forward modeling for marine sediment characterization using chirp sonars. Geophysics 76:T91–T99

    Article  Google Scholar 

  • Schock SG (2004a) A method for estimating the physical and acoustic properties of the sea bed using chirp sonar data. IEEE J Oceanic Eng 29:1200–1217

    Article  Google Scholar 

  • Schock SG (2004b) Remote estimates of physical and acoustic sediment properties in the South China Sea using chirp sonar data and the Biot model. IEEE J Oceanic Eng 29:1218–1230

    Article  Google Scholar 

  • Schock SG, Leblanc LR, Mayer LA (1989) Chirp subbottom profiler for quantitative sediment analysis. Geophysics 54:445–450

    Article  Google Scholar 

  • Sheriff RE, Geldart LP (1995) Exploration Seismology. Campbridge University Press, Campbridge

    Book  Google Scholar 

  • Smith DT, Li WN (1966) Echo-sounding and sea-floor sediments. Mar Geol 4:353–364

    Article  Google Scholar 

  • Stevenson IR, Mccann C, Runciman PB (2002) An attenuation-based sediment classification technique using Chirp sub-bottom profiler data and laboratory acoustic analysis. Mar Geophys Res 23:277–298

    Article  Google Scholar 

  • Stoll RD, Kan T-K (1981) Reflection of acoustic waves at a water–sediment interface. J Acoust Soc Am 70:149–157

    Article  Google Scholar 

  • Tian Y, Chen Z, Hou Z et al (2019) Geoacoustic provinces of the northern South China Sea based on sound speed as predicted from sediment grain sizes. Mar Geophys Res 40:571–579

    Article  Google Scholar 

  • Tseng Y-T, Ding J-J, Liu C-S (2012) Analysis of attenuation measurements in ocean sediments using normal incidence Chirp sonar. IEEE J Oceanic Eng 37:533–543

    Article  Google Scholar 

  • Tyce RC (1976) Near-bottom observations of 4 kHz acoustic reflectivity and attenuation. Geophysics 41:673–699

    Article  Google Scholar 

  • Vardy ME (2015) Deriving shallow-water sediment properties using post-stack acoustic impedance inversion. Near Surface Geophysics 13:143–154

    Article  Google Scholar 

  • Vardy ME, Vanneste M, Henstock TJ et al (2017) State-of-the-art remote characterization of shallow marine sediments: the road to a fully integrated solution. Near Surf Geophys 15:387–402

    Article  Google Scholar 

  • Wan L, Zhou J-X, Rogers PH (2010) Low-frequency sound speed and attenuation in sandy seabottom from long-range broadband acoustic measurements. J Acoust Soc Am 128:578–589

    Article  Google Scholar 

  • Wang J, Guo C, Liu B et al (2016) Distribution of geoacoustic properties and related influencing factors of surface sediments in the southern South China Sea. Mar Geophys Res 37:337–348

    Article  Google Scholar 

  • Wood WT, Martin KM, Wooyeol J et al (2014) Seismic reflectivity effects from seasonal seafloor temperature variation. Geophys Res Lett 41:6826–6832

    Article  Google Scholar 

  • Xu K, Milliman JD, Li A et al (2009) Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea. Cont Shelf Res 29:2240–2256

    Article  Google Scholar 

  • Yang G-B, Lu L-G, Wang G-S et al (2016) Coastal sound-field change due to typhoon-induced sediment warming. J Acoust Soc Am 140:EL242–E246

    Article  Google Scholar 

  • Zheng H-b, Yan P, Chen J et al (2012) Seabed sediment classification in the northern South China Sea using inversion method. Appl Ocean Res 39:131–136

    Article  Google Scholar 

  • Zheng J, Xu J, Tong S et al (2019) The significance of seabed reflection coefficient derived from high frequency seismic data to marine sedimentary environment. In: Tang W (ed) IOP Conference Series: Earth and Environmental Science. IOP Publishing, Shanya

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 41230318). We thank Aijun Wang and Jianyong Fang for providing the geological data. We also thank the reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianglong Zheng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Xu, J., Tong, S. et al. Estimation of seafloor reflectivity in shallow water based on seismic data of sparker sources. Mar Geophys Res 42, 33 (2021). https://doi.org/10.1007/s11001-021-09456-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11001-021-09456-8

Keywords

Navigation