Skip to main content
Log in

FEM-supported machine learning for residual stress and cutting force analysis in micro end milling of aluminum alloys

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This study delves into a Bayesian machine learning (ML) framework designed to comprehensively characterize cutting force and residual stress in the micro end milling process across a diverse range of aluminum alloys. The foundation of this investigation rested on acquiring dependable training data through finite element method simulations, encompassing material properties and processing parameters as inputs, while the output targets included residual stress in both the transverse and cutting directions, as well as cutting force divided into feed force and thrust force. The outcomes were remarkable, unveiling high predictive accuracy for both residual stress and cutting force, with a slight advantage in residual stress prediction. Moreover, the study revealed the significant influence of output target values on the weight functions of input parameters, highlighting distinct dependencies between each output target and the corresponding input features. This investigation elucidated that predicting residual stress and cutting force in micro end milling represents a multifaceted process contingent upon the interplay of material properties and processing parameters. The intricate nature of this process underscores the Bayesian ML model’s potential as a robust and highly accurate approach, adept at effectively encapsulating these complex objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Acerbi, L.: Variational Bayesian Monte Carlo. Adv. Neural Inf. Process. Syst. 31 (2018).

  • Agrawal, S., Joshi, S.S.: Analytical modelling of residual stresses in orthogonal machining of AISI4340 steel. J. Manuf. Process. 15, 167–179 (2013)

    Article  Google Scholar 

  • Akram, S., Jaffery, S.H.I., Khan, M., Fahad, M., Mubashar, A., Ali, L.: Numerical and experimental investigation of Johnson–Cook material models for aluminum (Al 6061–T6) alloy using orthogonal machining approach. Adv. Mech. Eng. 10, 1687814018797794 (2018)

    Article  Google Scholar 

  • Alajmi, M.S., Almeshal, A.M.: Estimation and optimization of tool wear in conventional turning of 709M40 alloy steel using support vector machine (SVM) with Bayesian optimization. Materials (basel). 14, 3773 (2021)

    Article  Google Scholar 

  • Bagheri, B., Abbasi, M., Givi, M.: Effects of vibration on microstructure and thermal properties of friction stir spot welded (FSSW) aluminum alloy (Al5083). Int. J. Precis. Eng. Manuf. 20, 1219–1227 (2019). https://doi.org/10.1007/s12541-019-00134-9

    Article  Google Scholar 

  • Caruso, S., Imbrogno, S., Rinaldi, S., Umbrello, D.: Finite element modeling of microstructural changes in Waspaloy dry machining. Int. J. Adv. Manuf. Technol. 89, 227–240 (2017)

    Article  Google Scholar 

  • Chakradhar, B., Singaravel, B., Ugrasen, G., Kumar, A.K.: Prediction of cutting forces using MRA, GMDH and ANN techniques in micro end milling of titanium alloy. Mater. Today Proc. 72, 1943–1949 (2023)

    Article  Google Scholar 

  • Cheng, M., Jiao, L., Yan, P., Feng, L., Qiu, T., Wang, X., Zhang, B.: Prediction of surface residual stress in end milling with Gaussian process regression. Measurement 178, 109333 (2021). https://doi.org/10.1016/j.measurement.2021.109333

    Article  Google Scholar 

  • Chiba, N., Masuda, K., Uchida, K., Miura, Y.: Designing composition ratio of magnetic alloy multilayer for transverse thermoelectric conversion by Bayesian optimization. APL Mach. Learn. 1(2) (2023).

  • Daoud, M., Chatelain, J.F., Bouzid, A.: Effect of rake angle on Johnson–Cook material constants and their impact on cutting process parameters of Al2024-T3 alloy machining simulation. Int. J. Adv. Manuf. Technol. 81, 1987–1997 (2015)

    Article  Google Scholar 

  • Du, H., Wu, C., Li, D., Yip, W.S., Wang, Z., To, S.: Feasibility study on ultraprecision micro-milling of the additively manufactured NiTi alloy for generating microstructure arrays. J. Mater. Res. Technol. 25, 55–67 (2023)

    Article  Google Scholar 

  • Gao, X., Wang, H., Tan, H., Xing, L., Hu, Z.: Data-driven machine learning for alloy research: recent applications and prospects. Mater. Today Commun. 36, 106697 (2023)

    Article  Google Scholar 

  • Geng, X., Cheng, Z., Wang, S., Peng, C., Ullah, A., Wang, H., Wu, G.: A data-driven machine learning approach to predict the hardenability curve of boron steels and assist alloy design. J. Mater. Sci. 57, 10755–10768 (2022)

    Article  Google Scholar 

  • Huo, D., Lin, C., Choong, Z.J., Pancholi, K., Degenaar, P.: Surface and subsurface characterisation in micro-milling of monocrystalline silicon. Int. J. Adv. Manuf. Technol. 81, 1319–1331 (2015)

    Article  Google Scholar 

  • Jia, Z., Lu, X., Gu, H., Ruan, F., Liang, S.Y.: Deflection prediction of micro-milling Inconel 718 thin-walled parts. J. Mater. Process. Technol. 291, 117003 (2021). https://doi.org/10.1016/j.jmatprotec.2020.117003

    Article  Google Scholar 

  • Jing, X., Lv, R., Chen, Y., Tian, Y., Li, H.: Modelling and experimental analysis of the effects of run out, minimum chip thickness and elastic recovery on the cutting force in micro-end-milling. Int. J. Mech. Sci. 176, 105540 (2020)

    Article  Google Scholar 

  • Kumari, N., Kumar, M.: Impact of ogival nosed Projectiles on Al 1100 H-12 thin Plates: numerical Study. IOP Conf. Ser. Mater. Sci. Eng. 1248, 12046 (2022). https://doi.org/10.1088/1757-899X/1248/1/012046

    Article  Google Scholar 

  • Lalwani, D.I., Mehta, N.K., Jain, P.K.: Extension of Oxley’s predictive machining theory for Johnson and Cook flow stress model. J. Mater. Process. Technol. 209, 5305–5312 (2009)

    Article  Google Scholar 

  • Liang, Z., Du, Y., Ma, Y., Su, Z., Chen, R., Yuan, H., Zhou, T., Wang, X.: Development of polycrystalline diamond micro end mill for milling-grinding combined machining of cemented carbide. J. Manuf. Process. 79, 844–853 (2022)

    Article  Google Scholar 

  • Liang, S.Y., Su, J.-C.: Residual stress modeling in orthogonal machining. CIRP Ann. 56, 65–68 (2007)

    Article  Google Scholar 

  • Liu, Q., Cheng, J., Liao, Z., Liu, M., Chen, M., Zhao, L., Lei, H., Ding, W.: Fractal analysis on machined surface morphologies of soft-brittle KDP crystals processed by micro ball-end milling. Materials (basel). 16, 1782 (2023)

    Article  Google Scholar 

  • Lu, J., Yue, C., Chen, Z., Liu, X., Li, M., Liang, S.Y.: Analytical modeling of milling residual stress under different tool wear conditions. Int. J. Adv. Manuf. Technol. 127, 4253–4269 (2023). https://doi.org/10.1007/s00170-023-11715-4

    Article  Google Scholar 

  • Mamedov, A., Lazoglu, I.: Thermal analysis of micro milling titanium alloy Ti–6Al–4V. J. Mater. Process. Technol. 229, 659–667 (2016)

    Article  Google Scholar 

  • Mamun, O., Wenzlick, M., Sathanur, A., Hawk, J., Devanathan, R.: Machine learning augmented predictive and generative model for rupture life in ferritic and austenitic steels. Npj Mater. Degrad. 5, 20 (2021)

    Article  Google Scholar 

  • Masmiati, N., Sarhan, A.A.D.: Optimizing cutting parameters in inclined end milling for minimum surface residual stress–Taguchi approach. Measurement 60, 267–275 (2015)

    Article  Google Scholar 

  • McDowell, D.L.: An approximate algorithm for elastic-plastic two-dimensional rolling/sliding contact. Wear 211, 237–246 (1997)

    Article  Google Scholar 

  • Meijer, A.L., Stangier, D., Tillmann, W., Biermann, D.: Induction of residual compressive stresses in the sub-surface by the adjustment of the micromilling process and the tool´s cutting edge. CIRP Ann. 71, 97–100 (2022). https://doi.org/10.1016/j.cirp.2022.04.065

    Article  Google Scholar 

  • Mittelman, B., Priel, E., Navi, N.U.: A finite element study of thermo-mechanical fields and their relation to friction conditions in Al1050 ring compression tests. J. Manuf. Mater. Process. 2, 83 (2018)

    Google Scholar 

  • Park, S.M., Lee, T., Lee, J.H., Kang, J.S., Kwon, M.S.: Gaussian process regression-based Bayesian optimization of the insulation-coating process for Fe–Si alloy sheets. J. Mater. Res. Technol. 22, 3294–3301 (2023)

    Article  Google Scholar 

  • Pei, X., Hong Zhao, Y., Chen, L., Guo, Q., Duan, Z., Pan, Y., Hou, H.: Robustness of machine learning to color, size change, normalization, and image enhancement on micrograph datasets with large sample differences. Mater. Des. 232, 112086 (2023)

    Article  Google Scholar 

  • Qasemi, M., Tahmasbi, V., Sheikhi, M.-M., Zolfaghari, M.: An effect of osteon orientation in end milling operation of cortical bone based on FEM and experiment. J. Manuf. Process. 81, 141–154 (2022)

    Article  Google Scholar 

  • Rahul, Y., Vipindas, K., Mathew, J.: Methodology for prediction of sub-surface residual stress in micro end milling of Ti-6Al-4V alloy. J. Manuf. Process. 62, 600–612 (2021). https://doi.org/10.1016/j.jmapro.2020.12.031

    Article  Google Scholar 

  • Rahul, Y., Vipindas, K., Sekhar, K.M., Mathew, J.: Modeling of mechanical residual stresses in micro-end milling of Ti-6Al-4V alloy. In: Shunmugam, M., Kanthababu, M. (eds.) Advances in Micro and Nano Manufacturing and Surface Engineering. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore (2019). https://doi.org/10.1007/978-981-32-9425-7_36

  • Raju, C.T., Hussain, S.J., Yedukondalu, G., Galal, A.M.: Investigation of the cutting-edge radius size effect on dynamic forces in micro end milling of brass260. Mater. Today Proc. (2023).

  • Ruiz-Jacinto, V.-S., Gutiérrez-Valverde, K.-S., Aslla-Quispe, A.-P., Burga-Falla, J.-M., Alarcón-Sucasaca, A., Huamán-Romaní, Y.-L.: Low-cycle fatigue life assessment of SAC solder alloy through a FEM-data driven machine learning approach. Solder. Surf. Mt. Technol. 36(2), 69–79. (2023). https://doi.org/10.1108/SSMT-08-2023-0045

  • Samavatian, V., Fotuhi-Firuzabad, M., Samavatian, M., Dehghanian, P., Blaabjerg, F.: Correlation-driven machine learning for accelerated reliability assessment of solder joints in electronics. Sci. Rep. 10, 14821 (2020). https://doi.org/10.1038/s41598-020-71926-7

    Article  Google Scholar 

  • Samavatian, M., Gholamipour, R., Samavatian, V.: Discovery of novel quaternary bulk metallic glasses using a developed correlation-based neural network approach. Comput. Mater. Sci. 186, 110025 (2021). https://doi.org/10.1016/j.commatsci.2020.110025

    Article  Google Scholar 

  • Scapin, M., Manes, A.: Behaviour of Al6061-T6 alloy at different temperatures and strain-rates: experimental characterization and material modelling. Mater. Sci. Eng. A 734, 318–328 (2018). https://doi.org/10.1016/j.msea.2018.08.011

    Article  Google Scholar 

  • Song, Y., Durkan, C., Murray, I., Ermon, S.: Maximum likelihood training of score-based diffusion models. Adv. Neural. Inf. Process. Syst. 34, 1415–1428 (2021)

    Google Scholar 

  • Sun, Y., Jin, L., Gong, Y., Wen, X., Yin, G., Wen, Q., Tang, B.: Experimental evaluation of surface generation and force time-varying characteristics of curvilinear grooved micro end mills fabricated by EDM. J. Manuf. Process. 73, 799–814 (2022)

    Article  Google Scholar 

  • Unune, D.R., Mali, H.S.: Current status and applications of hybrid micro-machining processes: a review. Proc. Inst Mech. Eng. Part B J. Eng. Manuf. 229, 1681–1693 (2015)

    Article  Google Scholar 

  • Vela, B., Khatamsaz, D., Acemi, C., Karaman, I., Arróyave, R.: Data-augmented modeling for yield strength of refractory high entropy alloys: a Bayesian approach. Acta Mater. 261, 119351 (2023)

    Article  Google Scholar 

  • Venkata Rao, K.: Power consumption optimization strategy in micro ball-end milling of D2 steel via TLBO coupled with 3D FEM simulation. Measurement 132, 68–78 (2019). https://doi.org/10.1016/j.measurement.2018.09.044

    Article  Google Scholar 

  • Wang, Z., Cao, Y., Gorbachev, S., Kuzin, V., He, W., Guo, J.: Research on conventional and high-speed machining cutting force of 7075–T6 aluminum alloy based on finite element modeling and simulation. Metals (basel) (2022). https://doi.org/10.3390/met12081395

    Article  Google Scholar 

  • Wang, N., Samavatian, M., Samavatian, V., Sun, H.: Bayesian machine learning-aided approach bridges between dynamic elasticity and compressive strength in the cement-based mortars. Mater. Today Commun. (2023). https://doi.org/10.1016/j.mtcomm.2023.106283

    Article  Google Scholar 

  • Wu, Q., Xie, D.-J., Si, Y., Zhang, Y.-D., Li, L., Zhao, Y.-X.: Simulation analysis and experimental study of milling surface residual stress of Ti-10V-2Fe-3Al. J. Manuf. Process. 32, 530–537 (2018)

    Article  Google Scholar 

  • Yadav, R., Das Chakladar, N., Paul, S.: Effects of tailored residual stress on micro-end milling: numerical modelling and validation. Int. J. Adv. Manuf. Technol. 127, 5449–5470 (2023)

    Article  Google Scholar 

  • Yasir, M., Danish, M., Mia, M., Gupta, M.K., Sarikaya, M.: Investigation into the surface quality and stress corrosion cracking resistance of AISI 316L stainless steel via precision end-milling operation. Int. J. Adv. Manuf. Technol. 112, 1065–1076 (2021)

    Article  Google Scholar 

  • Yu, Z., Li, D., Yang, J., Zeng, Z., Yang, X., Li, J.: Fabrication of micro punching mold for micro complex shape part by micro EDM. Int. J. Adv. Manuf. Technol. 100, 743–749 (2019)

    Article  Google Scholar 

  • Zeng, H.H., Yan, R., Peng, F.Y., Zhou, L., Deng, B.: An investigation of residual stresses in micro-end-milling considering sequential cuts effect. Int. J. Adv. Manuf. Technol. 91, 3619–3634 (2017)

    Article  Google Scholar 

  • Zhang, Y., Bai, Q., Qing, L., Chen, S.: 3D coupled thermo-mechanical simulation of surface roughness and residual stress in end milling aluminum alloy. Int. J. Adv. Manuf. Technol. 123, 4489–4504 (2022). https://doi.org/10.1007/s00170-022-10468-w

    Article  Google Scholar 

  • Zhang, P., Wang, S., Lin, Z., Yue, X., Gao, Y., Zhang, S., Yang, H.: Investigation on the mechanism of micro-milling CoCrFeNiAlX high entropy alloys with end milling cutters. Vacuum 211, 111939 (2023). https://doi.org/10.1016/j.vacuum.2023.111939

    Article  Google Scholar 

  • Zhou, R., Yang, W.: Analytical modeling of machining-induced residual stresses in milling of complex surface. Int. J. Adv. Manuf. Technol. 105, 565–577 (2019). https://doi.org/10.1007/s00170-019-04219-7

    Article  Google Scholar 

  • Zhou, Y., Yang, B.: Uncertainty quantification of predicting stable structures for high-entropy alloys using Bayesian neural networks. J. Energy Chem. 81, 118–124 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. K. Sharma or Hamzah Ali Alkhazaleh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M.K., Alkhazaleh, H.A., Askar, S. et al. FEM-supported machine learning for residual stress and cutting force analysis in micro end milling of aluminum alloys. Int J Mech Mater Des (2024). https://doi.org/10.1007/s10999-024-09713-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10999-024-09713-9

Keywords

Navigation