Skip to main content
Log in

An improved dynamic model of the spline coupling with misalignment and its load distribution analysis

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Spline couplings allow for a certain amount of misalignment and relative sliding between their internal and external components. However, the misalignment could cause serious uneven load distribution and aggravate the wear of a spline coupling. So far, the effects of misalignment on the load distribution of the spline coupling aren't fully understood. To solve the above problem, an improved dynamic model of the spline coupling is established, which introduces the static misalignment caused by installation and manufacturing errors and the dynamic misalignment introduced by the dynamic vibration displacement between the internal and external splines. The classical potential energy method is adopted to derive the meshing stiffness, and then the equivalent stiffness and meshing excitation force of the spline coupling with misalignment is obtained. The accuracy of the method proposed has been proved by software. The load distribution of the spline coupling with various misalignments is studied. The results show that: the misalignment would cause serious uneven load distribution, especially the static parallel misalignment. Meanwhile, the dynamic misalignment has a small effect on the load distribution, which can be ignored during load distribution analysis. The improved model can be widely applied to rotor systems connected by spline couplings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Alfares, M.A., Falah, A.H., Elkholy, A.H.: Clearance distribution of misaligned gear coupling teeth considering crowning and geometry variations. Mech Mach Theory. 41(10), 1258–1272 (2006)

    Article  Google Scholar 

  • AL-Shudeifat, M.A.: On the finite element modeling of the asymmetric cracked rotor. J. Sound. Vib. 332(11), 2795–2807 (2013)

  • Bai, J., Wang, W., Zhou, P. et al.: Dynamic simulation analysis on axle spline of high-speed train gauge-change system. Shock Vib., p. 8866405 (2021)

  • Cuffaro, V., Cura, F., Mura, A.: Analysis of the pressure distribution in spline couplings. P I Mech Eng C-J Mec. 226(12), 2852–2859 (2012)

    Google Scholar 

  • Cura, F., Mura, A., Gravina, M.: Load distribution in spline coupling teeth with parallel offset misalignment. P I Mech Eng C-J Mec. 227(10), 2195–2205 (2013)

    Google Scholar 

  • Curà, F., Mura, A.: Experimental procedure for the evaluation of tooth stiffness in spline coupling including angular misalignment. Mech. Syst. Signal Pr. 40(2), 545–555 (2013)

  • Curà, A.F.: Theoretical and numerical evaluation of tilting moment in crowned teeth splined couplings. Meccanica 53(1–2), 413–424 (2018)

    Article  Google Scholar 

  • Friswell, M.I., Penny, J.E.T., Garvey, S.D., et al.: Dynamics of Rotating Machines. Cambridge University Press, London (2010)

    Book  Google Scholar 

  • Guo, Y., Lambert, S., Wallen, R., et al.: Theoretical and experimental study on gear-coupling contact and loads considering misalignment, torque, and friction influences. Mech. Mach. Theory. 98, 242–262 (2016)

    Article  Google Scholar 

  • Hong, J., Talbot, D., Kahraman, A.: Load distribution analysis of clearance-fit spline joints using finite elements. Mech Mach Theory. 74, 42–57 (2014a)

    Article  Google Scholar 

  • Hong, J., Talbot, D., Kahraman, A.: A semi-analytical load distribution model for side-fit involute splines. Mech. Mach. Theory. 76, 39–55 (2014b)

    Article  Google Scholar 

  • Hong, J., Talbot, D., Kahraman, A.: Effects of tooth indexing errors on load distribution and tooth load sharing of splines under combined loading conditions. J. Mech. Des. 137(3), 032601 (2015a)

    Article  Google Scholar 

  • Hong, J., Talbot, D., Kahraman, A.: A generalized semi-analytical load distribution model for clearance-fit, major-fit, minor-fit, and mismatched splines. P I Mech. Eng. C-J Mec., pp. 1–13 (2015b)

  • Iurritegui, A., Gonzalez-Perez, I., Arana, A., et al.: Computerized generation and tooth contact analysis of spherical gear couplings for high misalignment applications. Mech Mach Theory. 164, 104408 (2021)

    Article  Google Scholar 

  • Lalanne, M., Ferraris, G.: Rotor Dynamics Prediction in Engineering, 2nd edn. John Wiley & Sons, New York (1998)

    Google Scholar 

  • Leen, S.B., Hyde, T.H.R et al.: An investigation of the fatigue and fretting performance of a representative aero-engine spline coupling. J. Strain. Anal. Eng. Des. 37(6), 565–583 (2002)

  • Medina, S., Olver, A.V.: Regimes of contact in spline couplings. J Tribol-T ASME. 124(2), 1–13 (2002)

    Article  Google Scholar 

  • Tjernberg, A.: Load distribution in the axial direction in a spline coupling. Eng Fail Anal 8, 557–570 (2001)

    Article  Google Scholar 

  • Tuckmantel, F., Cavalca, K.L.: Vibration signatures of a rotor-coupling-bearing system under angular misalignment. Mech Mach Theory. 133, 559–583 (2019)

    Article  Google Scholar 

  • Xiao, L., Xu, Y., Sun, X., et al.: Experimental investigation on the effect of misalignment on the wear failure for spline couplings. Eng Fail Anal 131, 105755 (2022)

    Article  Google Scholar 

  • Yu, P., Wang, C., Liu, Y., et al.: Analytical modeling of the lateral stiffness of a spline coupling considering teeth engagement and influence on rotor dynamics. Eur J Mech A-Solids. 92, 104468 (2022)

    Article  MathSciNet  Google Scholar 

  • Zhang, C., Wang, D., Zhu. R.P. et al.: Dynamic modeling and vibration characteristics analysis for the helicopter horizontal tail drive shaft system with the ballistic impact vertical penetrating damage. Iran. J. Sci. Technol. Trans. Mech. Eng. (2022)

  • Zhu, H., Chen, W., Zhu, R., et al.: Modelling and dynamic analysis of spline-connected multi-span rotor system. Meccanica 55(6), 1413–1433 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors are grateful to the financial supports from National Natural Science Foundation of China (Grant NO. 52275061 and 52005253) and National Key Laboratory of Science and Technology on Helicopter Transmission (Grant NO. HTL-A-21G07& HTL-A-22K01).

Author information

Authors and Affiliations

Authors

Contributions

CZ: Paper writing and editing. RZ: Supervision and financial support. WC: Financial support. DW: Financial support. XY: Supervision. DS: Literature survey.

Corresponding author

Correspondence to Rupeng Zhu.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ \left\{ {\begin{array}{*{20}l} {F_{Nx} = \sum\limits_{j = 1}^{{n_{Z} }} {\sum\limits_{i = 1}^{z} {k_{ji}^{T} \left\{ {\left. \begin{gathered} \lambda_{ji} + [\Delta x + (j{\text{d}}z - B/2)\Delta \theta_{y} ]\sin (\theta_{i} - \alpha_{ji} ) + \hfill \\ \quad \quad \quad \;\;\;[\Delta y - (j{\text{d}}z - B/2)\Delta \theta_{x} ]\cos (\theta_{i} - \alpha_{ji} ) \hfill \\ \end{gathered} \right\}} \right.\sin (\theta_{i} - \alpha_{ji} )} } } \hfill \\ {F_{Ny} = \sum\limits_{j = 1}^{{n_{Z} }} {\sum\limits_{i = 1}^{z} {k_{ji}^{T} \left\{ {\left. \begin{gathered} \lambda_{ji} + [\Delta x + (j{\text{d}}z - B/2)\Delta \theta_{y} ]\sin (\theta_{i} - \alpha_{ji} ) + \hfill \\ \quad \quad \quad \;\;\;[\Delta y - (j{\text{d}}z - B/2)\Delta \theta_{x} ]\cos (\theta_{i} - \alpha_{ji} ) \hfill \\ \end{gathered} \right\}} \right.\cos (\theta_{i} - \alpha_{ji} )} } } \hfill \\ {M_{Nx} = \sum\limits_{j = 1}^{{n_{Z} }} {\sum\limits_{i = 1}^{z} {k_{ji}^{T} \left\{ {\left. \begin{gathered} \lambda_{ji} + [\Delta x + (j{\text{d}}z - B/2)\Delta \theta_{y} ]\sin (\theta_{i} - \alpha_{ji} ) + \hfill \\ \quad \quad \quad \;\;\;[\Delta y - (j{\text{d}}z - B/2)\Delta \theta_{x} ]\cos (\theta_{i} - \alpha_{ji} ) \hfill \\ \end{gathered} \right\}} \right.\cos (\theta_{i} - \alpha_{ji} )(j{\text{d}}z - B/2)} } } \hfill \\ {M_{Ny} = \sum\limits_{j = 1}^{{n_{Z} }} {\sum\limits_{i = 1}^{z} {k_{ji}^{T} \left\{ {\left. \begin{gathered} \lambda_{ji} + [\Delta x + (j{\text{d}}z - B/2)\Delta \theta_{y} ]\sin (\theta_{i} - \alpha_{ji} ) + \hfill \\ \quad \quad \quad \;\;\;[\Delta y - (j{\text{d}}z - B/2)\Delta \theta_{x} ]\cos (\theta_{i} - \alpha_{ji} ) \hfill \\ \end{gathered} \right\}} \right.\sin (\theta_{i} - \alpha_{ji} )(j{\text{d}}z - B/2)} } } \hfill \\ \end{array} } \right. $$
(29)
$$ \left\{ {\begin{array}{*{20}l} {k_{N11} = \sum\limits_{j = 1}^{{n_{Z} }} {\sum\limits_{i = 1}^{z} {k_{ji}^{T} \sin^{2} (\theta_{i} - \alpha_{ji} ),k_{N22} = \sum\limits_{j = 1}^{{n_{Z} }} {\sum\limits_{i = 1}^{z} {k_{ji}^{T} \cos^{2} (\theta_{i} - \alpha_{ji} )} } } } } \hfill \\ {k_{N33} = \sum\limits_{j = 1}^{{n_{Z} }} {\sum\limits_{i = 1}^{z} \begin{gathered} k_{ji}^{T} \cos^{2} (\theta_{i} - \alpha_{ji} )(B/2 - j{\text{d}}z)^{2} - \hfill \\ k_{ji}^{T} \left\{ {\left. \begin{gathered} \lambda_{ji} + [\Delta x + (j{\text{d}}z - B/2)\Delta \theta_{y} ]\sin (\theta_{i} - \alpha_{ji} ) - \hfill \\ [\Delta y - (j{\text{d}}z - B/2)\Delta \theta_{x} ]\cos (\theta_{i} - \alpha_{ji} ) \hfill \\ \end{gathered} \right\}} \right.\sin (\theta_{i} - \alpha_{ji} )(r_{{\text{f}}} + L_{ji} )\sin \theta_{i} \hfill \\ \end{gathered} } } \hfill \\ {k_{N44} = \sum\limits_{j = 1}^{{n_{Z} }} {\sum\limits_{i = 1}^{z} \begin{gathered} k_{ji}^{T} \sin^{2} (\theta_{i} - \alpha_{ji} )(B/2 - j{\text{d}}z)^{2} - \hfill \\ k_{ji}^{T} \left\{ {\left. \begin{gathered} \lambda_{ji} + [\Delta x + (j{\text{d}}z - B/2)\Delta \theta_{y} ]\sin (\theta_{i} - \alpha_{ji} ) - \hfill \\ [\Delta y - (j{\text{d}}z - B/2)\Delta \theta_{x} ]\cos (\theta_{i} - \alpha_{ji} ) \hfill \\ \end{gathered} \right\}} \right.\cos (\theta_{i} - \alpha_{ji} )(r_{{\text{f}}} + L_{ji} )\cos \theta_{i} \hfill \\ \end{gathered} } } \hfill \\ {k_{N12} = k_{N21} = \sum\limits_{j = 1}^{{n_{Z} }} {\sum\limits_{i = 1}^{z} {k_{ji}^{T} \sin [2(\theta_{i} - \alpha_{ji} )]/2} } } \hfill \\ {k_{N13} = k_{N31} = \sum\limits_{j = 1}^{{n_{Z} }} {\sum\limits_{i = 1}^{z} {k_{ji}^{T} \sin [2(\theta_{i} - \alpha_{ji} )](B/2 - j{\text{d}}z)/2} } } \hfill \\ {k_{N14} = k_{N41} = \sum\limits_{j = 1}^{{n_{Z} }} {\sum\limits_{i = 1}^{z} {k_{ji}^{T} \sin^{2} (\theta_{i} - \alpha_{ji} )(j{\text{d}}z - B/2)} } } \hfill \\ {k_{N23} = k_{N32} = \sum\limits_{j = 1}^{{n_{Z} }} {\sum\limits_{i = 1}^{z} {k_{ji}^{T} \cos^{2} (\theta_{i} - \alpha_{ji} )(B/2 - j{\text{d}}z)} } } \hfill \\ {k_{N24} = k_{N42} = \sum\limits_{j = 1}^{{n_{Z} }} {\sum\limits_{i = 1}^{z} {k_{ji}^{T} \sin [2(\theta_{i} - \alpha_{ji} )](j{\text{d}}z - B/2)/2} } } \hfill \\ {k_{N34} = k_{N43} = \sum\limits_{j = 1}^{{n_{Z} }} {\sum\limits_{i = 1}^{z} {k_{ji}^{T} \sin [2(\theta_{i} - \alpha_{ji} )](j{\text{d}}z - B/2)^{2} /2} } } \hfill \\ \end{array} } \right. $$
(30)
$$ {\mathbf{T}}{ = }\left[ {\begin{array}{*{20}c} {\cos \Omega t} & { - \sin \Omega t} & {} & {} \\ {\sin \Omega t} & {\cos \Omega t} & {} & {} \\ {} & {} & {\cos \Omega t} & { - \sin \Omega t} \\ {} & {} & {\sin \Omega t} & {\cos \Omega t} \\ \end{array} } \right] $$
(31)
$$ {\mathbf{K}}_{0} { = }\frac{1}{2}\left[ {\begin{array}{*{20}c} {k_{11} + k_{22} } & {k_{12} - k_{21} } & {k_{13} + k_{24} } & {k_{14} - k_{23} } \\ {k_{21} - k_{12} } & {k_{22} + k_{11} } & {k_{23} - k_{14} } & {k_{24} + k_{13} } \\ {k_{31} + k_{42} } & {k_{32} - k_{41} } & {k_{33} + k_{44} } & {k_{34} - k_{43} } \\ {k_{41} - k_{32} } & {k_{42} + k_{31} } & {k_{43} - k_{34} } & {k_{44} + k_{33} } \\ \end{array} } \right] $$
(32)
$$ {\mathbf{K}}_{1} { = }\frac{1}{2}\left[ {\begin{array}{*{20}c} {k_{11} - k_{22} } & {k_{12} + k_{21} } & {k_{13} - k_{24} } & {k_{14} + k_{23} } \\ {k_{21} + k_{12} } & {k_{22} - k_{11} } & {k_{23} + k_{14} } & {k_{24} - k_{13} } \\ {k_{31} - k_{42} } & {k_{32} + k_{41} } & {k_{33} - k_{44} } & {k_{34} + k_{43} } \\ {k_{41} + k_{32} } & {k_{42} - k_{31} } & {k_{43} + k_{34} } & {k_{44} - k_{33} } \\ \end{array} } \right] $$
(33)
$$ {\mathbf{K}}_{2} { = }\frac{1}{2}\left[ {\begin{array}{*{20}c} { - k_{12} - k_{21} } & {k_{11} - k_{22} } & { - k_{14} - k_{23} } & {k_{13} - k_{24} } \\ {k_{11} - k_{22} } & {k_{21} + k_{12} } & {k_{13} - k_{24} } & {k_{23} + k_{14} } \\ { - k_{32} - k_{41} } & {k_{31} - k_{42} } & { - k_{34} - k_{43} } & {k_{33} - k_{44} } \\ {k_{31} - k_{42} } & {k_{41} + k_{32} } & {k_{33} - k_{44} } & {k_{43} + k_{34} } \\ \end{array} } \right] $$
(34)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhu, R., Chen, W. et al. An improved dynamic model of the spline coupling with misalignment and its load distribution analysis. Int J Mech Mater Des 20, 393–408 (2024). https://doi.org/10.1007/s10999-023-09681-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-023-09681-6

Keywords

Navigation