Skip to main content
Log in

Pure bending in non-linear micropolar elasticity

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Large-deformation pure cylindrical bending of a homogeneous strip of uniform finite thickness with micropolar (Cosserats’) material constitution is analysed and related both to the large-deformation solution of classical (Cauchy’s) continuum theory and that of the small-deformation (linear) micropolar theory, known to exhibit a size effect. For a micropolar generalisation of the semi-linear material, the closed-form solution is obtained using a semi-inverse approach, which is equivalent to the solution in classical elasticity, possessing the same relationship between the curvature and the distribution of stress components and exhibiting the same softening effect relative to the linear solution. A couple stress of constant amount over the cross section develops in addition, in proportion to the curvature and the squared ratio between the characteristic bending length of the material and the thickness of the specimen and linear in Poisson’s ratio, in the same way as in the linear micropolar elasticity. The compound effect of non-linear softening and micropolar stiffening is analysed in detail with the view of providing a theoretical background for development of architected materials with internal structure for large-displacement applications. In particular, the size-effect estimate supplied by the linear analysis is shown to be in error, which builds up rapidly in highly deformed materials with relatively large characteristic bending length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Berglund, K.: Generalization of Saint-Venant’s principle to micropolar continua. Arch. Ration. Mech. Anal. 64, 317–326 (1977)

  • Blatz, P.J., Ko, W.L.: Application of finite elasticity to the deformation of rubbery materials. Trans. Soc. Rheol. 6, 223–251 (1962)

    Article  Google Scholar 

  • Bruhns, O.T., Xiao, H., Meyers, A.: Finite bending of a rectangular block of an elastic Hencky material. J. Elast. 66, 237–256 (2002)

    Article  MathSciNet  Google Scholar 

  • Carroll, M.M., Horgan, O.: Finite strain solutions for compressible elastic solid. Q. Appl. Math. 48, 767–780 (1990)

    Article  MathSciNet  Google Scholar 

  • Cosserat, F., Cosserat, E.: Théorie des corps déformables, A. Hermann et Fils, Paris, (1909)

  • Gauthier, R., Jahsman, W.E.: A Quest for Micropolar Elastic Constants. J. Appl. Mech. 42(2), 369–374 (1975)

    Article  Google Scholar 

  • Grbčić, S., Jelenić, G., Ribarić, D.: Quadrilateral 2D linked-interpolation finite elements for micropolar continuum. Acta. Mech. Sin. 35, 1001–1020 (2019)

    Article  MathSciNet  Google Scholar 

  • Grbčić, S., Jelenić, G., Ibrahimbegović, A.: Geometrically non-linear 3D finite-element analysis of micropolar continuum. Int. J. Solids Struct. 202, 745–764 (2020)

    Article  Google Scholar 

  • Hill, R.: On constitutive inequalities for simple materials - I. J. Mech. Phys. Solids 16(4), 229–242 (1968)

    Article  Google Scholar 

  • Ieşan, D.: On Saint-Venant’s problem in micropolar elasticity. Int. J. Eng. Sci. 9, 879–888 (1971)

  • Jelenić, G.: Pure bending in non-linear elasticity: closed-form 2D solution for semi-linear orthotropic material. Eur. J. Mech. A/Solids 90, 104289 (2021)

    Article  MathSciNet  Google Scholar 

  • John, F.: Plane strain problems for a perfectly elastic material of harmonic type. Commun. Pure Appl. Math. 13, 239–296 (1960)

    Article  MathSciNet  Google Scholar 

  • Kafadar, C.B., Eringen, A.C.: Micropolar media - I. The classical theory. Int. J. Eng. Sci. 9, 271–305 (1971)

    Article  Google Scholar 

  • Karyakin, M., Kalashnikov, V., Shubchinskaya, N.: Nonlinear effects in a plane problem of the pure bending of an elastic rectangular panel. Int. J. Eng. Sci. 80, 90–105 (2014)

    Article  MathSciNet  Google Scholar 

  • Kassianidis, F., Ogden, R.W.: On large bending deformations of transversely isotropic rectangular elastic blocks. Note di Matematica 27, 131–154 (2007)

    MathSciNet  MATH  Google Scholar 

  • Lakes, R.S.: Physical Meaning of Elastic Constants in Cosserat, Void, and Microstretch Elasticity. Mech. Mater. Struct. 11(3), 1–13 (2016)

    MathSciNet  Google Scholar 

  • Lurie, A.: Nonlinear Theory of Elasticity. North-Holland, Amsterdam (1990)

    MATH  Google Scholar 

  • Nakamura, S., Lakes, R.S.: Finite element analysis of Saint-Venant end effects in micropolar elastic solids. Eng. Comput. 12, 571–587 (1995)

    Article  Google Scholar 

  • Ogden, R.W.: Non-Linear Elastic Deformations. Dover Publications Inc, Mineola, New York (1984)

    MATH  Google Scholar 

  • Oldfather, W.A., Ellis, C.A., Brown, D.M.: Leonhard Euler’s elastic curves. Isis 20(1), 72–160 (1933)

  • Pham, M.-S., Liu, C., Todd, I., Lertthanasarn, J.: Damage-tolerant architected materials inspired by crystal microstructure. Nature 565, 305–311 (2019)

    Article  Google Scholar 

  • Pietraszkiewicz, W., Eremeyev, V.A.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3–4), 774–787 (2009)

    Article  MathSciNet  Google Scholar 

  • Rivlin, R.S.: Large elastic deformations of isotropic materials. V. The problem of flexture. Proc. R. Soc. A 195, 463–473 (1949)

    MATH  Google Scholar 

  • Seth, B.: Generalized strain measure with respect to applications to physical problems, Tech. rep., University of Wisconsin, Mathematics Research Center, Technical Summary Report No. 248, Madison, Wisconsin (1961)

  • Seth, B.R.: Finite strain in elastic problems. Philosop. Trans. R. Soc. Lond. A 234, 231–264 (1935)

    Article  Google Scholar 

  • Timoshenko, S., Goodier, J.: Theory of Elasticity. McGraw-Hill, New York (1951)

    MATH  Google Scholar 

  • Toupin, R.A.: Saint-Venant’s principle. Arch. Ration. Mech. Anal. 18, 83–96 (1965)

  • Xia, X., Afshar, A., Yang, H., Portela, C.M., Kochmann, D.M., Di Leo, C.V., Greer, J.R.: Electrochemically reconfigurable architected materials. Nature 573, 205–213 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The presented research has been financially supported by the Croatian Science Foundation project Fixed-pole Concept in Numerical Modelling of Cosserats’ Continuum (HRZZ-IP-2018-01-1732), and the University of Rijeka grant Computational and Experimental Procedures for Assessment of Material Parameters in Cosserats’ Continuum (uniri-tehnic-18-248 1415).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordan Jelenić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Solution in small-deformation regime

Appendix: Solution in small-deformation regime

Since \(\zeta = \frac{h}{2} \frac{m_0}{\omega }\) and \(\zeta = \frac{1}{2} \ln \frac{1+{\bar{p}}_0}{1-{\bar{p}}_0} = {\bar{p}}_0 + \frac{1}{3} {\bar{p}}_0^3 + \frac{1}{5} {\bar{p}}_0^5 + \mathcal{O} \left( {\bar{p}}_0^7 \right)\), in the linear case there follows \(\zeta = {\bar{p}}_0\) and \(\frac{m_0}{p_0} = \frac{2\omega }{{\tilde{E}}h}\). Next, the coefficient \(\kappa = 6 \frac{\sinh 2 \zeta - 2 \zeta }{(2\zeta )^2\sinh 2 \zeta } \frac{\tanh \zeta }{\zeta }\) in (19) may be expanded as \(\kappa = 6 \frac{2 \zeta + \frac{(2\zeta )^3}{6} + \frac{(2\zeta )^5}{120} + \mathcal{O} (\zeta ^7) - 2 \zeta }{(2\zeta )^2 \left[ 2 \zeta + \frac{(2\zeta )^3}{6} + \frac{(2\zeta )^5}{120} + \mathcal{O} (\zeta ^7) \right] } \frac{\zeta - \frac{\zeta ^3}{3} + \mathcal{O} (\zeta ^5)}{\zeta } = 1 - \frac{4\zeta ^2}{5} + \mathcal{O} (\zeta ^4)\), and thus \(\lim _{\zeta \rightarrow 0} M = p_0 W \left( 1 + \frac{12\omega }{{\tilde{E}} h^2} \right) = m_0 A \left( 1+ \frac{{\tilde{E}} h^2}{12 \omega } \right)\). Conversely,

$$\begin{aligned} \zeta = \frac{1}{1+\phi } \frac{M}{{\tilde{E}} W} , \quad p_0 = \frac{1}{1+\phi } \frac{M}{W} , \quad m_0 = \frac{\phi }{1+\phi } \frac{M}{A} , \end{aligned}$$
(A.1)

with \(\phi = 24 (1-n) \left( \frac{l_b}{h} \right) ^2\) introduced in (20). For \(\zeta \rightarrow 0\), \(\cosh \eta = 1\), \(\sinh \eta = \frac{2 \zeta X^2}{h}\) and \(e^{-\eta } = 1 - \frac{2 \zeta X^2}{h}\), thus the strain and stress components in (22) turn into

$$\begin{aligned} E_B^{11}= & {} - \zeta \frac{2 X^2}{h} = - \frac{1}{1+\phi } \frac{M X^2}{{\tilde{E}} I} , \nonumber \\ B^{11}= & {} - {\tilde{E}} \zeta \frac{2 X^2}{h} = - \frac{1}{1+\phi } \frac{M X^2}{I} , \nonumber \\ E_B^{22}= & {} a \zeta \frac{2 X^2}{h} = \frac{a}{1+\phi } \frac{M X^2}{{\tilde{E}} I} , B^{22} = 0 , \nonumber \\ K^{31}= & {} \frac{2 \zeta }{h} = \frac{1}{1+\phi } \frac{M}{{\tilde{E}} I} , G^{31} = 2 \frac{\omega }{h} \zeta = \frac{\phi }{1+\phi } \frac{M}{A} , \nonumber \\ B^{33}= & {} - n {\tilde{E}} \zeta \frac{2 X^2}{h} = - \frac{n}{1+\phi } \frac{M X^2}{I} , \nonumber \\ G^{13}= & {} 2 \frac{\omega }{h} (\tau -1) \zeta = \frac{\phi (\tau -1)}{1+\phi } \frac{M}{A} . \end{aligned}$$
(A.2)

Turning to the deformed geometry, since \(\cosh \eta = 1 + \frac{\eta ^2}{2} + \mathcal{O} \left( \zeta ^4 \right)\), \(\sinh \eta = \eta + \mathcal{O} \left( \zeta ^3 \right)\) and \(\cosh \zeta = 1 + \frac{\zeta ^2}{2} + \mathcal{O} \left( \zeta ^4 \right)\), from radial position (13) we obtain \(\frac{r}{\rho }= 1 + a - \frac{\eta + \mathcal{O} \left( \zeta ^3 \right) + a \left[ 1 + \frac{\eta ^2}{2} + \mathcal{O} \left( \zeta ^4 \right) \right] }{1 + \frac{\zeta ^2}{2} + \mathcal{O} \left( \zeta ^4 \right) } = 1 - \eta + \frac{a}{2} \left( \zeta ^2 - \eta ^2 \right) + \mathcal{O} \left( \zeta ^3 \right)\), while of course, \(\theta = \frac{2\zeta }{h} X^1\). In addition, \(\cos \xi = 1 - \frac{\xi ^2}{2} + \mathcal{O} \left( \zeta ^4 \right)\) and \(\sin \xi = \xi + \mathcal{O} \left( \zeta ^3 \right)\), thus from (15), \(X^1 = \rho \xi\) and \(\eta = \frac{2 X^2}{h} \zeta\) we have

$$\begin{aligned} x^1&= \rho \left[ 1 - \eta + \frac{a}{2} \left( \zeta ^2 - \eta ^2 \right) + \mathcal{O} \left( \zeta ^3 \right) \right] \left[ \xi + \mathcal{O} \left( \zeta ^3 \right) \right] \\&= \left( 1 - \frac{2 X^2}{h} \zeta \right) X^1 + \mathcal{O} \left( \zeta ^2 \right) \\ x^2&= \rho - \rho \left[ 1 - \eta + \frac{a}{2} \left( \zeta ^2 - \eta ^2 \right) + \mathcal{O} \left( \zeta ^3 \right) \right] \left[ 1 - \frac{\xi ^2}{2} + \mathcal{O} \left( \zeta ^4 \right) \right] \\&= X^2 - \frac{\zeta }{h} \left( a \frac{h^2}{4} - a X^2 X^2 - X^1 X^1 \right) + \mathcal{O} \left( \zeta ^2 \right) . \end{aligned}$$

Using (3), for \(\zeta ^2 \rightarrow 0\) the displacements \(u^1 = x^1 - x^1_0\) and \(u^2 = x^2 - x^2_0\) become

$$\begin{aligned} u^1 = - \frac{2 \zeta }{h} X^1 X^2 \quad \mathrm{and} \quad u^2 = \frac{\zeta }{h} \left( a X^2 X^2 + X^1 X^1 \right) , \end{aligned}$$

since \(X^2_e = \frac{h}{4} a \zeta + \mathcal{O} \left( \zeta ^2 \right)\). The last result follows from \(r(X^2_e)=\rho\), i.e. as a solution of the quadratic equation \(\left( \frac{2 \zeta X^2_e}{h} \right) ^2 + \frac{2}{a} \frac{2 \zeta X^2_e}{h} - \zeta ^2 = \mathcal{O} \left( \zeta ^3 \right)\) coming out of (13), which in this case gives \(a \left( \cosh \zeta - \cosh \eta _e \right) = \sinh \eta _e\). Substitutions \(\cosh \eta _e = 1 + \frac{1}{2} \eta _e^2 + \mathcal{O} \left( \zeta ^4 \right)\), \(\sinh \eta _e = \eta _e + \mathcal{O} \left( \zeta ^3 \right)\) and \(\eta _e = \frac{2 X^2_e}{h} \zeta\) are used in the derivation.

Finally, making use of (A.1), the displacement components and the rotation of a material point X are obtained as

$$\begin{aligned} u^1= & {} - \frac{M}{1+\phi } \frac{X^1 X^2}{{\tilde{E}} I} , \\ u^2= & {} \frac{M}{1+\phi } \frac{X^1 X^1 + a X^2 X^2}{2 {\tilde{E}} I} , \quad \theta = \frac{M}{1+\phi } \frac{X^1}{{\tilde{E}} I} , \end{aligned}$$

which correspond to the known linear results derived in Gauthier and Jahsman (1975), Grbčić et al. (2019). For \(\phi =0\), these results, as well as those in (A.2), reduce to the classical solution (Timoshenko and Goodier 1951).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jelenić, G. Pure bending in non-linear micropolar elasticity. Int J Mech Mater Des 18, 243–265 (2022). https://doi.org/10.1007/s10999-021-09577-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-021-09577-3

Keywords

Navigation