Skip to main content
Log in

A general discrete element approach for particulate materials

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Computational approaches of mechanical systems based on the continuum hypothesis, are sometimes inaccurate and not reliable. As an example, problems involving severe mesh distortion, geometric discontinuities or characterized by an assembly of discrete parts, are not easily solvable within the Lagrangian continuum framework, such as by using the classical finite element method. Computational approaches based on the description of the domain without the need of a mesh connectivity, would be useful to overcome this drawbacks. On the other hand a discrete approach is a particularly suitable tool for modeling materials at the microscale where its particulate nature becomes evident. The Lagrangian-based meshless formulation—known as smoothed particle hydrodynamics (SPH)—has been widely applied to different engineering fields. In the present research a general force potential-based particle method falling within the SPH framework for the mechanical simulation of granular and continuum materials under dynamic condition, is developed. The particle–particle and particle-boundary interaction is modeled through force functionals, tuned according to the nature of the material being analyzed (solid, granular, …). The proposed potential-based formulation allows the description of the forces existing between the discrete elements of generic materials. Thanks to the capability to deal with short and long distance actions (namely mechanical and/or electrostatic), general force–deformation laws, etc. it allows a straightforward mechanical simulation of fine particles assemblies such as powders. The theoretical basis of the computational approach are presented and some examples involving powder motion and a continuum mechanical problem are illustrated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a(r infl):

Function of the influence radius of a particle

A ij , A 0,ij :

Cross-section area of the truss assumed between particles i and j and its reference value, respectively

b i :

Component of the body force in the i-th direction

c(s):

Function accounting for the no-penetration condition

\( {\mathbf{C}}^{\prime } \) :

Current elastic tensor of the material

\( d^{*} \) :

Equivalent diameter of two particles in contact

d i :

Diameter of the generic particle i

\( E^{\prime } (s),E_{0} \) :

Elastic modulus of a linear element that represents the material connecting the two particles i, j and corresponding reference value for s ≫ 0

E i :

Elastic modulus of the generic particle i

\( \bar{E} \) :

Equivalent Young modulus of the elastic contact between two particles

E tot (x) = Π(x):

Total energy of the particle system

F ij (s):

Generic force acting between a couple of particles at the effective distance s

F i , F d , F b , F e :

Internal force, damping force, boundary and external force vectors, respectively

h :

Smoothing length or support dimension

H(w):

Heaviside function

K(s):

Stiffness of the particles bonding depending on their effective distance s

\( \kappa_{e} = \frac{1}{{4\pi \varepsilon_{0} }} \) :

Coulomb’s constant

K n :

Normal stiffness of the particle-boundary contact

m i , M :

Mass of the particle i and mass matrix, respectively

n, t :

Unit vectors normal and parallel to the tangential plane in the contact point between a generic particle and the boundary surface, respectively

P i :

Force vector acting on particle i

q, qi :

Unit vector (and corresponding components) identifying the direction connecting the centers of two particles

q i :

Magnitude of the charges of the i particle (expressed in Coulombs)

r :

Distance between the centers of a couple of particles

r infl :

Radius of influence (or maximum interacting distance) of a particle

r 0 :

Distance between the centers of the particles at which \( F(r_{{}} = r_{0} ) \to - \infty \)

s, s e :

Effective distance between particles’ surfaces and at the equilibrium state, respectively

\( \begin{aligned} s^{\prime } & = \\ & = r - \raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} (d_{i} + d_{j} ) \\ \end{aligned} \) :

Distance between two particles’ surfaces

t, Δt :

Time variable and time integration step amplitude, respectively

T n , T t :

Particle-boundary contact surface forces normal and parallel to the tangential plane at the contact point, respectively

T t , ij :

Tangential force between the colliding particles i, j

V p :

Volume of the particle p

w :

Displaced distance of one particle into another or into the contact surface

\( W(\left| {{\mathbf{x}} - {\mathbf{x}}_{i} } \right|) \) :

Kernel or smoothing function for the SPH method

x 0 :

Position vector identifying the equilibrium state

\( {\mathbf{x}}_{i} \), \( {\dot{\mathbf{x}}}_{i} \), \( {\ddot{\mathbf{x}}}_{i} \) :

Position, velocity and acceleration vector of the particle i, respectively

\( {\mathbf{x}} \), \( {\dot{\mathbf{x}}} \), \( {\ddot{\mathbf{x}}} \) :

Generic position, velocity and acceleration vector, respectively

α :

Coefficient defining the maximum co-penetration depth

γ :

Thickness of a soft layer added to the boundary surface in order to smooth the contact forces

\( \delta (\left| {{\mathbf{x}} - {\mathbf{x}}_{i} } \right|) \) :

Dirac delta function placed at x i

\( \delta = \alpha \cdot \bar{r} \) :

Maximum co-penetration amount between two particles

ε ij :

Strain tensor components

\( \varepsilon_{0} = \frac{{10^{ - 9} }}{36\pi }{\text{ C}}^{ 2} {\text{N}}^{ - 1} {\text{m}}^{ - 2} \) :

Permittivity of the free space

Φ(x), Φ tot (x):

Generic strain energy potential and potential of the particle system, respectively

λ d :

Damping coefficient

η :

Viscosity coefficient

χ(w):

Smoothing function for the force particle-boundary contact evaluation

μ d :

Coefficient of dynamic friction between particles and boundaries

μ md :

Coefficient of dynamic friction between particles

ρ :

Mass density

σ ij :

Stress tensor components

References

  • Aubry, R., Idelsohn, S.R., Oñate, E.: Particle finite element method in fluid mechanics including thermal convection-diffusion. Comput. Struct. 83, 1459–1475 (2005)

    Article  Google Scholar 

  • Benz, W.: Smooth particle hydrodynamics: a review. In: Buchler, J.R. (ed.) Numerical Modeling of Non-linear Stellar Pulsation: Problems and Prospects. Kluwer Academic, Boston (1990)

    Google Scholar 

  • Brighenti, R., Carpinteri, A., Corbari, N.: A unified approach for static and dynamic fracture failure in solids and granular materials by a particle method. Fract. Struct. Integr 34, 80–89 (2015)

    Google Scholar 

  • Brighenti, R., Corbari, N.: Dynamic behaviour of solids and granular materials: a force potential-based particle method. Int. J. Num. Methods Eng. (2015a). doi:10.1002/nme.4998

  • Brighenti, R., Corbari, N.: A potential-based SPH particle approach for the dynamic failure assessment of compact and granular materials. J. Physical Mesomech. 18(4), 402-415 (2015b)

  • Brilliantov, N., Spahn, F., Hertzsch, J., Pöshel, T.: Model for collision in granular gases. Phys. Rev. E 53, 5382–5392 (1996)

    Article  Google Scholar 

  • Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  • Curtin, W.A., Miller, R.E.: Atomistic/continuum coupling in computational materials science. Model. Simul. Mater. Sci. Eng. 11, R33–R68 (2003)

    Article  Google Scholar 

  • D’Addetta, G.A., Kun, F., Ramm, E.: On the application of a discrete model to the fracture process of cohesive granular materials. Granul Matter 4, 77–90 (2002)

    Article  MATH  Google Scholar 

  • De Gennes, P.G.: Granular matter: a tentative view. Rev. Mod. Phys. 71, S374–S382 (1999)

    Article  Google Scholar 

  • Español, P., Serrano, M., Zuniga, I.: Coarse-graining of a fluid and its relation with dissipative particle dynamics and smoothed particle dynamics. Int. J. Mod. Phys. C 8(4), 899–908 (1997)

    Article  Google Scholar 

  • Español, P.: Fluid particle dynamics: a synthesis of dissipative particle dynamics and smoothed particle dynamics. Europhys. Lett. 39(6), 605–610 (1997)

    Article  Google Scholar 

  • Feng, J.Q., Hays, D.A.: Theory of electric field detachment of charged toner particles in electrophotography. J. Imag. Sci. Technol. 44, 19–25 (2000)

    Google Scholar 

  • Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)

    Article  MATH  Google Scholar 

  • Hays, D.A.: Adhesion of charged particles. J. Adhes. Sci. Technol. 9, 1063–1073 (1995)

    Article  Google Scholar 

  • Hoover, W.G.: Computational physics with particles—nonequilibrium molecular dynamics and smooth particle applied mechanics. Comput. Meth. Sci. Tech. 13, 83–93 (2007)

    Article  Google Scholar 

  • Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301–313 (1971)

    Article  Google Scholar 

  • Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  • Krivtsov, A.: Molecular dynamics simulation of impact fracture in polycrystalline materials. Meccanica 38, 61–70 (2003)

    Article  MATH  Google Scholar 

  • Liu, B., Huang, Y., Jiang, H., Qu, S., Hwang, K.C.: The atomic-scale finite element method. Comput. Methods Appl. Mech. Eng. 193, 1849–1864 (2004)

    Article  MATH  Google Scholar 

  • Liu, M.B., Liu, G.R.: Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods Eng 17, 25–76 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)

    Article  Google Scholar 

  • Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68, 1703–1759 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Monaghan, J.J.: Smoothed particle hydrodynamics and its diverse applications. Ann. Rev. Fluid Mech. 44, 323–346 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Monaghan, J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992)

    Article  Google Scholar 

  • Monaghan, J.J.: SPH elastic dynamics. Comput. Methods Appl. Mech. Eng. 190, 6641–6662 (2001)

    Article  MATH  Google Scholar 

  • Monaghan, J.J.: Why particle methods work. SIAM J. Sci. Stat. Comput. 3(4), 422–433 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Muzzio, F.J., Goodridge, C.L., Alexander, A., Arratia, P., Yang, H., Sudah, O., Mergen, G.: Sampling and characterization of pharmaceutical powders and granular blends. Int. J. Pharm. 250, 51–64 (2003)

    Article  Google Scholar 

  • O’Sullivan, C., Bray, J.D.: Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme. Eng. Comput. 21, 278–303 (2004)

    Article  MATH  Google Scholar 

  • Obermayr, M., Dressler, K., Vrettos, C., Eberhard, P.: A bonded-particle model for cemented sand. Comput. Geotech. 49, 299–313 (2013)

    Article  Google Scholar 

  • Oñate, E., Owen, R.: Particle-Based Methods: Fundamentals and Applications. Springer, Dordrecht (2011)

    Book  MATH  Google Scholar 

  • Rycroft, C.H., Kamrin, K., Bazant, M.Z.: Assessing continuum postulates in simulations of granular flow. J. Mech. Phys. Solid 57, 828–839 (2009)

    Article  Google Scholar 

  • Shah, R.B., Tawakkul, M.A., Khan, M.A.: Comparative evaluation of flow for pharmaceutical powders and granules. AAPS Pharm. Sci. Tech. 9(1), 250–258 (2008)

    Article  Google Scholar 

  • Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solid 48, 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Silling, S.A., Askari, E.: A meshfree method based on peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)

    Article  Google Scholar 

  • Sugino, T., Yuu, S.: Numerical analysis of fine powder flow using smoothed particle method and experimental verification. Chem. Eng. Sci. 57, 227–237 (2002)

    Article  Google Scholar 

  • Takeuchi, M.: Adhesion forces of charged particles. Chem. Eng. Sci. 61, 2279–2289 (2006)

    Article  Google Scholar 

  • Tavarez, F.A., Plesha, M.E.: Discrete element method for modeling solid and particulate materials. Int. J. Num. Methods Eng. 70, 379–404 (2007)

    Article  MATH  Google Scholar 

  • Verlet, L.: Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the research support for this work provided by the Italian Ministry for University and Technological and Scientific Research (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Brighenti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brighenti, R., Corbari, N. A general discrete element approach for particulate materials. Int J Mech Mater Des 13, 267–286 (2017). https://doi.org/10.1007/s10999-015-9332-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-015-9332-z

Keywords

Navigation