Skip to main content
Log in

Optimization of operating conditions for a double-row tapered roller bearing

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This paper proposes a methodology that combines the Finite Element Method and multiple response surface optimization to search for the optimal operating conditions of a double-row Tapered Roller Bearing (TRB) that has a Preload (P), radial load (Fr), axial load (Fa) and torque (T). Initially, FE models based on a double-row TRB are built and validated in the basis of experimental data and theoretical models. Three of the most important parameters used in the design of TRB were obtained from a simulation of the FE models with a combination of several operating conditions that were previously selected in accordance with a design of experiments. The design parameters are: contact stress radio for both rows of rollers (S1 and S2), maximum deformation of the outer raceway (αmax), and the difference between the gaps of the inner raceways (Δδ) or misalignment. Based on the results of the FE simulations, quadratic regressions models are generated that use the response surface method to predict the design parameters when new operating condition are applied. Then, a multi-response optimization study based on these models and using desirability functions is conducted. It is concluded that the accuracy of the results demonstrates that this methodology may be used to search for the optimal operating condition in a double-row TRB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\( l_{t} \) :

Rollers’ effective length (mm)

\( d_{m} \) :

Mean diameter of tapered roller (mm)

\( D_{\hbox{max} } \) :

Diameter of tapered roller at large end (mm)

\( D_{\hbox{min} } \) :

Diameter of tapered roller at small end (mm)

\( D_{m} \) :

Bearing pitch diameter (mm)

\( D_{i} \) :

Bore diameter (mm)

\( D_{o} \) :

Outer diameter (mm)

L:

Longitude of the bearing (mm)

Z:

Number of rollers

\( b_{o} \) :

Semi minor axis of the projected contact ellipse (mm)

\( K_{n} \) :

Load deflection factor

\( \sigma \) :

Contact normal stress (MPa)

\( \alpha \) :

Contact angle (°)

\( \alpha_{i} \) :

Inner raceway-roller contact angle (°)

\( \alpha_{o} \) :

Free contact angle (°)

\( \alpha_{R} \) :

Tapered roller included angle (°)

\( \sum {\rho_{o} } \) :

Curvature sum (mm−1)

MAPE:

Mean Absolute Percentage Error

RMSE:

Root Mean Square Error

References

  • Arora, V., van der Hoogt, P.J.M., Aarts, R.G.K.M., de Boer, A.: Identification of stiffness and damping characteristics of axial air-foil bearings. Int. J. Mech. Mater. Des. 7(3), 231–243 (2011)

    Article  Google Scholar 

  • Arora, V., Van der Hoogt, P.J.M., Aarts, R.G.K.M., de Boer, A.: Identification of dynamic properties of radial air-foil bearings. Int. J. Mech. Mater. Des. 6(4), 305–318 (2010)

    Article  Google Scholar 

  • Azaouzi, M., Lebaal, N., Rauchs, G., Belouettar, S.: Optimal design of multi-step stamping tools based on response surface method. Simul. Model. Pract. Theory 24, 1–14 (2012)

    Article  Google Scholar 

  • Bahloul, R., Mkaddem, A., Dal Santo, P.: Sheet metal bending optimization using response surface method, numerical simulation and design of experiments. Int. J. Mech. Sci. 48(9), 991–1003 (2006)

    Article  MATH  Google Scholar 

  • Borgelt, C., Gil, M.Á., Sousa, J.M., Verleysen, M.: Towards Advanced Data Analysis by Combining Soft Computing and Statistics. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  • Box, G.E., Behnken, D.W.: Some new three level designs for the study of quantitative variables. Technometrics 2(4), 455–475 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  • Box, G.E., Wilson, K.B.: On the experimental attainment of optimum conditions. J. R. Stat. Soc. A. Stat. 13(1), 1–45 (1951)

    MathSciNet  MATH  Google Scholar 

  • del Coz Diaz, J.J., Garcia-Nieto, P.J., Alvarez-Rabanal, F.P., Alonso-Martínez, M., Dominguez-Hernandez, J., Perez-Bella, J.M.: The use of response surface methodology to improve the thermal transmittance of lightweight concrete hollow bricks by FEM. Constr. Build. Mater. 52, 331–344 (2014)

    Article  Google Scholar 

  • Demirhan, N., Kanber, B.: Stress and displacement distributions on cylindrical roller bearing rings using FEM. Mech. Based Des. Struct. 36(1), 86–102 (2008)

    Article  Google Scholar 

  • Derringer, G., Suich, R.: Simultaneous optimization of several response variables. J. Qual. Technol. 12, 214–219 (1980)

    Google Scholar 

  • Di Lorenzo, R., Ingarao, G., Chinesta, F.: Integration of gradient based and response surface methods to develop a cascade optimisation strategy for Y-shaped tube hydroforming process design. Adv. Eng. Softw. 41(2), 336–348 (2010)

    Article  MATH  Google Scholar 

  • El-Abbasi, N., Bathe, K.J.: Stability and patch test performance of contact discretizations and a new solution algorithm. Comput. Struct. 79(16), 1473–1486 (2001)

    Article  Google Scholar 

  • Eschmann, P., Hasbargen, L., Weigand, K.: Ball and roller bearings: theory, design, and application. R. Oldenbourg, Munich (1985)

    Google Scholar 

  • Escribano, R., Lostado, R., Fernández, R., Villanueva, P., Mac Donald, B.J.: Improvement in Manufacturing Welded Products Through Multiple Response Surface Methodology and Data Mining Techniques. International Joint Conference SOCO’14-CISIS’14-ICEUTE’14, pp. 301–310. Springer International Publishing, Berlin (2014)

    Google Scholar 

  • Feng, Q., Prinja, N.K.: NAFEMS Benchmark Tests for Finite Element Modelling of Contact. Gapping and Sliding, NAFEMS, Report (2001). R0081

    Google Scholar 

  • Fisher, R.A.: The Design of Experiments. Oliver and Boyd, Oxford (1935)

    Google Scholar 

  • Gelman, A.: Analysis of variance? Why it is more important than ever. Ann. Stat. 33(1), 1–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Guo, Y., Parker, R.G.: Stiffness matrix calculation of rolling element bearings using a finite element/contact mechanics model. Mech. Mach. Theory 51, 32–45 (2012)

    Article  Google Scholar 

  • Harrington, E.C.: The desirability function. Ind. Qual. Control 21(10), 494–498 (1965)

    Google Scholar 

  • Harris, T.A., Kotzalas, M.N.: Essential Concepts of Bearing Technology. Taylor and Francis, New York (2006)

    Google Scholar 

  • Hertz, H.: On the Contact of Rigid Elastic Solids and on Hardness, in Miscellaneous Papers. MacMillan, London (1896)

    Google Scholar 

  • Illera, M., Lostado, R., Fernandez, R., MacDonald, B.: Characterization of electrolytic tinplate materials via combined finite element and regression models. J. Strain Anal. Eng. 49(6), 467–480 (2014)

    Article  Google Scholar 

  • Kania, L.: Modelling of rollers in calculation of slewing bearing with the use of finite elements. Mech. Mach. Theory 41(11), 1359–1376 (2006)

    Article  MATH  Google Scholar 

  • Kelly, D.W., Gago, D.S., Zienkiewicz, O.C., Babuska, I.: A posteriori error analysis and adaptive processes in the finite element method: part I—Error analysis. Int. J. Numer. Methods Eng. 19(11), 1593–1619 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Kuhn, M.: Desirability: desirabiliy function optimization and ranking. R package v.1.6. http://CRAN.R-project.org/package=desirability (2014)

  • Lenth, R.V.: Response-surface methods in R using RSM. J. Stat. Softw. 32(7), 1–17 (2009)

    Article  Google Scholar 

  • Lostado, R., Escribano, R., Fernández, R., Illera, M., Mac Donald, B.J.: Combination of the Finite Element Method and Data Mining Techniques to Design and Optimize Bearings. International Joint Conference SOCO’14-CISIS’14-ICEUTE’14, pp. 165–174. Springer International Publishing, Berlin (2014)

    Google Scholar 

  • Lostado, R., Martínez De Pisón, F.J., Pernía, A., Alba, F., Blanco, J.: Combining regression trees and the finite element method to define stress models of highly non-linear mechanical systems. J. Strain Anal. Eng. 44(6), 491–502 (2009)

    Article  Google Scholar 

  • Lundberg, G., Sjövall, H. Stress and Deformation in Elastic Contacts, Publication no. 4. Institute of Theory of Elasticity and Strength of Materials, Chalmers Institute Technology, Gothenburg (1958)

  • Marwala, T.: Finite-element-model Updating Using Computational Intelligence Techniques: Applications to Structural Dynamics. Springer, Amsterdam (2010)

    Book  MATH  Google Scholar 

  • Meguid, S.A., Czekanski, A.: Advances in computational contact mechanics. Int. J. Mech. Mater. Des. 4(4), 419–443 (2008)

    Article  Google Scholar 

  • Montgomery, D.C.: Design and Analysis of Experiments. John, New Jersey (2008)

    Google Scholar 

  • MSC Marc User's Guide Version 2010. MSC Software Corporation LA (2010)

  • Myers, R.H.: Response surface methodology. Allyn-Bacon, Boston (1971)

    Google Scholar 

  • Nagatomo, T., Takahashi, K., Okamura, Y., Kigawa, T., Noguchi, S.: Effects of load distribution on life of radial roller bearings. J. Tribol. 134(2), 021101 (2012)

    Article  Google Scholar 

  • R Core Team.: R: A language and environment for statistical computing. R Foundation for statistical computing. http://www.R-project.org/ (2014)

  • Sathiya, P., Aravindan, S., Haq, A.N.: Optimization for friction welding parameters with multiple performance characteristics. Int. J. Mech. Mater. Des. 3(4), 309–318 (2006)

    Article  Google Scholar 

  • Satyanarayana, S., Melkote, S.N.: Finite element modeling of fixture-workpiece contacts: single contact modeling and experimental verification. Int. J. Mach. Tool Manuf. 44(9), 903–913 (2004)

    Article  Google Scholar 

  • Shigley, J.E., Mischke, C.R., Budynas, R.G.: Mechanical Engineering Design. Mc. Graw Hill, New York (2004)

    Google Scholar 

  • Taguchi, G.: Introduction to Quality Engineering: Designing Quality into Products and Processes. Quality Resources, New York (1986)

    Google Scholar 

  • Wilkinson, L., Dallal, G.E.: Tests of significance in forward selection regression with an F-to enter stopping rule. Technometrics 23(4), 377–380 (1981)

    Google Scholar 

  • Yanhui, Y., Dong, L., Ziyan, H., Zijian, L.: Optimization of preform shapes by RSM and FEM to improve deformation homogeneity in aerospace forgings. Chin. J. Aeronaut. 23(2), 260–267 (2010)

    Article  Google Scholar 

  • Zavarise, G., De Lorenzis, L.: A modified node-to-segment algorithm passing the contact patch test. Int. J. Numer. Meth. Eng. 79(4), 379–416 (2009)

    Article  MATH  Google Scholar 

  • Zeng, G., Li, S.H., Yu, Z.Q., Lai, X.M.: Optimization design of roll profiles for cold roll forming based on response surface method. Mater. Des. 30(6), 1930–1938 (2009)

    Article  Google Scholar 

  • Zhang, X.P., Ahmed, H., Yao, Z.: Multi-body contact modeling and statistical experimental validation for hub-bearing unit. Tribol. Int. 36(7), 505–510 (2003)

    Article  Google Scholar 

Download references

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Lostado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lostado, R., Escribano García, R. & Fernandez Martinez, R. Optimization of operating conditions for a double-row tapered roller bearing. Int J Mech Mater Des 12, 353–373 (2016). https://doi.org/10.1007/s10999-015-9311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-015-9311-4

Keywords

Navigation