Skip to main content
Log in

Field intensity factors around inclusion corners in 0–3 and 1–3 composites subjected to thermo-mechanical loads

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

A super inclusion corner apex element for polygonal inclusions in 0–3 and 1–3 composites is developed by using numerical stress and displacement field solutions based on an ad hoc finite element eigenanalysis method. Singular stresses near the apex of inclusion corner under thermo-mechanical loads can be obtained by using a super inclusion corner apex element in conjunction with hybrid-stress elements. The validity and the applicability of this technique are established by comparing the present numerical results with the existing solutions and the conventional finite element solutions. As examples of applications, a square array of square inclusions in 0–3 composites and a rectangular array of rectangular inclusions in 1–3 composites are considered. All numerical examples show that the present numerical method yields satisfactory solutions with fewer elements and is applicable to complex problems such as multiple singular points or fields in composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Barut, A., Guven, I., Madenci, E.: Analysis of singular stress fields at junctions of multiple dissimilar materials under mechanical and thermal loading. Int. J. Solids Struct. 38, 9077–9109 (2001)

    Article  MATH  Google Scholar 

  • Budiansky, B.: On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids 13, 223 (1965)

    Article  Google Scholar 

  • Buryachenko, V.A.: Micromechanics of Heterogeneous Materials. Springer, New York (2007)

    Book  MATH  Google Scholar 

  • Buryachenko, V.A., Bechel, V.T.: A series solution of the volume integral equation for multiple inclusion interaction problems. Compos. Sci. Technol. 60, 2465–2469 (2000)

    Article  Google Scholar 

  • Chen, D.H.: Analysis of singular stress field around the inclusion corner tip. Eng. Fract. Mech. 49, 533–546 (1994)

    Article  Google Scholar 

  • Chen, D.H., Nisitani, H.: Singular stress fields near the corner of the corner of jointed dissimilar materials. J. Appl. Mech. 60, 607–613 (1993a)

    Article  MATH  Google Scholar 

  • Chen, D.H., Nisitani, H.: Singular stress field in jointed materials due to thermal residual stress. Trans. JSME Ser. A 59, 1937–1941 (1993b)

    Article  Google Scholar 

  • Chen, M.C., Ping, X.C.: A novel hybrid finite element analysis of inplane singular elastic field around inclusion corner-tips in elastic media. Int. J. Solids Struct. 46, 2527–2538 (2009a)

    Article  MATH  Google Scholar 

  • Chen, M.C., Ping, X.C.: Analysis of the interaction within a rectangular array of rectangular inclusions using a new hybrid finite element method. Eng. Fract. Mech. 76, 580–593 (2009b)

    Article  Google Scholar 

  • Chen, M.C., Ping, X.C.: Analysis of singular thermal stress fields around corner tips of inclusions. Chin. J. Solids Mech. 32, 314–318 (2011)

    Google Scholar 

  • Chen, M.C., Sze, K.Y.: A novel hybrid finite element analysis of bimaterial wedge problems. Eng. Fract. Mech. 68, 1463–1476 (2001)

    Article  Google Scholar 

  • Dong, C.Y., Cheung, Y.K., Lo, S.H.: A regularized domain integral formulation for inclusion problems of various shapes by equivalent inclusion method. Comput. Methods Appl. Mech. Eng. 191, 3411–3421 (2002)

    Article  MATH  Google Scholar 

  • Dong, C.Y., Lo, S.H., Cheung, Y.K.: Stress analysis of inclusion problems of various shapes in an infinite anisotropic elastic medium. Comput. Methods Appl. Mech. Eng. 192, 683–696 (2003)

    Article  MATH  Google Scholar 

  • Dong, C.Y., Zhang, G.L.: Boundary element analysis of three dimensional nanoscale inhomogeneities. Int. J. Solids Struct. 50, 201–208 (2013)

    Article  Google Scholar 

  • Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh, S., Mukhopadhyay, S.N.: A material based finite element analysis of heterogeneous media involving Dirichlet tessellations. Comput. Methods Appl. Mech. Eng. 104, 211–247 (1993)

    Article  MATH  Google Scholar 

  • Gong, S.X., Meguid, S.A.: Interacting circular inhomogeneities in plane elastostatics. Acta Mech. 99, 49–60 (1993a)

    Article  MATH  Google Scholar 

  • Gong, S.X., Meguid, S.A.: On the elastic fields of an elliptical inhomogeneity under plane deformation. Proc. R. Soc. Lond. A 443, 457–471 (1993b)

    Article  MATH  Google Scholar 

  • Hill, J.R.: A self consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222 (1965)

    Article  Google Scholar 

  • Kattis, M.A., Meguid, S.A.: On the partly bonded thermoelastic circular inhomogeneity. J. Appl. Mech. 62, 535–537 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Kröner, E.: Berechnung der elastischen Kongstanten des Vielkristalls aus den Kongstanten des Einkristalls. Z. Phys. 151, 504–518 (1958)

    Article  Google Scholar 

  • Kushch, V.I., Shmegera, S.V., Buryachenko, V.A.: Interacting elliptic inclusions by the method of complex potentials. Int. J. Solids Struct. 42, 5491–5512 (2005)

    Article  MATH  Google Scholar 

  • Lee, J., Choi, S., Mal, A.: Stress analysis of an unbounded elastic solid with orthotropic inclusions and voids using a new integral equation technique. Int. J. Solids Struct. 38, 2789–2802 (2001)

    Article  MATH  Google Scholar 

  • Luo, J.C., Gao, C.F.: Stress field of a coated arbitrary shape inclusion. Meccanica 46, 1055–1071 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Madenci, E., Shkarayev, S., Sergeev, B.: Thermo-mechanical stresses for a triple junction of dissimilar materials: global–local finite element analysis. Theor. Appl. Fract. Mech. 30, 103–117 (1998)

    Article  Google Scholar 

  • Meguid, S.A., Hu, G.D.: A new finite element for treating plane thermomechanical heterogeneous solids. Int. J. Numer. Methods Eng. 44, 567–585 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Meguid, S.A., Zhu, Z.H.: A new finite element for treating inhomogenous solids. Int. J. Numer. Methods Eng. 38, 1579–1592 (1995a)

    Article  MATH  Google Scholar 

  • Meguid, S.A., Zhu, Z.H.: Stress distribution in dissimilar materials containing inhomogeneities near the interface using a novel finite element. Finite Elem. Anal. Des. 20, 283–298 (1995b)

    Article  MATH  Google Scholar 

  • Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metal. 21, 571–574 (1973)

    Article  Google Scholar 

  • Munz, D., Yang, Y.Y.: Stress singularities at the interface in bonded dissimilar materials under mechanical and thermal loads. J. Appl. Mech. 59, 857–881 (1992)

    Article  Google Scholar 

  • Mura, T.: Micromechanics of Defects in Solids. Martinus Nijhoff Publishers, Dordrecht (1987)

    Book  Google Scholar 

  • Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. P. Noordhoff, Groningen (1953)

    MATH  Google Scholar 

  • Nakamura, T., Suresh, S.: Effects of thermal residual stresses and fiber packing on deformation of metal-matrix composites. Acta Metal. Mater. 41, 1665–1681 (1993)

    Article  Google Scholar 

  • Nakasone, Y., Nishiyama, H., Nojiri, T.: Numerical equivalent inclusion method: a new computational method for analyzing stress fields in and around inclusions of various shapes. Mater. Sci. Eng. A 285, 229–238 (2000)

    Article  Google Scholar 

  • Nemat-Nasser, S., Muneo, H.: Micromechanics: Overall Properties of Heterogeneous Materials. Elsevier, Amsterdam (1999)

    Google Scholar 

  • Noda, N.A., Hayashida, H., Tomari, K.: Interaction among a row of ellipsoidal inclusions. Int. J. Fract. 102, 371–392 (2000a)

    Article  Google Scholar 

  • Noda, N.A., Takase, Y.: Intensity of singular stress at the fiber end in a hexagonal array of fibers. Int. J. Solids Struct. 42, 4890–4908 (2005)

    Article  MATH  Google Scholar 

  • Noda, N.A., Takase, Y., Chen, M.C.: Generalized stress intensity factors in the interaction between two fibers in matrix. Int. J. Fract. 103, 19–39 (2000b)

    Article  Google Scholar 

  • Noda, N.A., Takase, Y., Hamashima, T.: Generalized stress intensity factors in the interaction within a rectangular array of rectangular inclusions. Arch. Appl. Mech. 73, 311–322 (2003)

    Article  MATH  Google Scholar 

  • Noda, N.A., Shirao, R., Li, J., Sugimoto, J.S.: Intensity of singular stress fields causing interfacial debonding at the end of a fiber under pullout force and transverse tension. Int. J. Solids Struct. 44, 4472–4491 (2007)

    Article  MATH  Google Scholar 

  • Singh, I.V., Mishra, B.K., Bhattacharya, S.: XFEM simulation of cracks, holes and inclusions in functionally graded materials. Int. J. Mech. Mater. Des. 7, 199–218 (2011)

    Article  Google Scholar 

  • Sze, K.Y., Wang, H.T.: A simple finite element formulation for computing stress singularities at bimaterial interfaces. Finite Elem. Anal. Des. 35, 97–118 (2000)

    Article  MATH  Google Scholar 

  • Thomson, R.D., Hancock, J.W.: Local stress and strain fields near a spherical elastic inclusion in a physically deforming matrix. Int. J. Fract. 24, 209–228 (1984)

    Article  Google Scholar 

  • Tian, L., Rajapakse, R.K.N.D.: Elastic field of an isotropic matrix with a nanoscale elliptical inhomogeneity. Int. J. Solids Struct. 44, 7988–8005 (2007)

    Article  MATH  Google Scholar 

  • Tiwary, A., Hu, C., Ghosh, S.: Numerical conformal mapping method based Voronoi cell finite element model for analyzing microstructures with irregular heterogeneities. Finite Elem. Anal. Des. 43, 504–520 (2007)

    Article  MathSciNet  Google Scholar 

  • Tsukrov, I., Novak, J.: Effective elastic properties of solids with defects of irregular shapes. Int. J. Solids Struct. 391, 1539–1555 (2002)

    Article  Google Scholar 

  • Williams, M.L.: Stress singularities resulting from various boundary conditions in angular corners of plates in extension. J. Appl. Mech. 19, 526–528 (1952)

    Google Scholar 

  • Xu, L.M., Fan, H., Sze, K.Y., Li, C.: Elastic property prediction by finite element analysis with random distribution of materials for heterogeneous solids. Int. J. Mech. Mater. Des. 3, 319–327 (2006)

    Article  Google Scholar 

  • Zou, W.N., He, Q.C., Huang, M.J., Zheng, Q.S.: Eshelby’s problem of non-elliptical inclusions. J. Mech. Phys. Solids 58, 346–372 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This study is sponsored by the National Natural Science Foundation of China under Grant No. 51065008 and No. 51365013, the Natural Science Foundation of Jiangxi Province under Grant No. 20133ACB21002 and the Jiangxi provincial Jinggang-Star training Plan for Young Scientists under Grant No. 20112BCB23013. The support provided by China Scholarship Council (CSC) and Jiangxi Education Department during a visit of Xuecheng Ping to Prof. Yonggang Huang’s research group in Northwestern University are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengcheng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ping, X., Chen, M., Xiao, Y. et al. Field intensity factors around inclusion corners in 0–3 and 1–3 composites subjected to thermo-mechanical loads. Int J Mech Mater Des 12, 121–139 (2016). https://doi.org/10.1007/s10999-014-9287-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-014-9287-5

Keywords

Navigation