Skip to main content
Log in

The Schatten–von Neumann class associated with the Gabor–Riemann–Liouville operator

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

In this paper, we define the localization operator associated with the Riemann–Liouville operator, and show that it is not only bounded, but it is also in the Schatten–von Neumann class. We also give a trace formula when the symbol function is nonnegative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Baccar, N.B. Hamadi, L.T. Rachdi, Inversion formulas for the Riemann–Liouville transform and its dual associated with singular partial differential operators. Int. J. Math. Math. Sci. 2006, 1–26 (2006)

    Article  MathSciNet  Google Scholar 

  2. A. Bonami, B. Demange, P. Jaming, Hermite functions and uncertainty principles for the Fourier and the Gabor transforms. Rev. Mat. lberoam. 19, 23–55 (2003)

    Article  Google Scholar 

  3. P. Balazs, Hilbert–Schmidt operators and frames—classification, best approximation by multipliers and algorithms. Int. J. Wavelets Multiresolut. Inf. Process. 6(2), 315–330 (2008)

    Article  MathSciNet  Google Scholar 

  4. P. Balazs, D. Bayer, A. Rahimi, Multipliers for continuous frames in Hilbert spaces. J. Phys. A Math. Theor. 45(24), 023–244 (2012)

    Article  MathSciNet  Google Scholar 

  5. W. Czaja, G. Gigante, Continuous Gabor transform for strong hypergroups. J. Fourier Anal. Appl. 9, 321–339 (2003)

    Article  MathSciNet  Google Scholar 

  6. I. Daubechies, Time–frequency localization operators: a geometric phase space approach. IEEE Trans. Inf. Theory 34, 605–612 (1988)

    Article  MathSciNet  Google Scholar 

  7. I. Daubechies, T. Paul, Time–frequency localization operators—a geometric phase space approach: 2. Inverse Prob. 4, 661–680 (1988)

    Article  Google Scholar 

  8. I. Daubechies, The wavelet transform, time–frequency localization and signal analysis. IEEE Trans. Inf. Theory 36, 961–1005 (1990)

    Article  MathSciNet  Google Scholar 

  9. J.A. Fawcett, Inversion of n-dimensional spherical averages. SIAM J. Appl. Math. 45(02), 336–341 (1985)

    Article  MathSciNet  Google Scholar 

  10. D. Gabor, Theory of communication. J. Inst. Electr. Eng. 93, 429–441 (1946)

    Google Scholar 

  11. S. Ghobber, S. Omri, Time–frequency concentration of the windowed Hankel transform. Integral Transforms Spec. Funct. 25, 481–496 (2014)

    Article  MathSciNet  Google Scholar 

  12. A. Hammami, Shapiro’s uncertainty principle related to the windowed Fourier transform associated with the Riemann–Liouville operator. Oper. Matrices (2017). https://doi.org/10.7153/oam-2017-11-70

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Hellsten, L.-E. Andersson, An inverse method for the processing of synthetic aperture radar data. Inverse Probl. 3(1), 111–124 (1987)

    Article  MathSciNet  Google Scholar 

  14. Z.P. He, Spectra of Localization Operators on Groups. Doctor Dissertation of York University (1988)

  15. S. Helgason, The Radon Transform, 2nd edn. (Birkhäuser, Basel, 1999).

    Book  Google Scholar 

  16. M. Herberthson, A numerical implementation of an inverse formula for CARABAS raw data, in Internal Report D30430-3.2. (National Defense Research Institute, Linköping, 1986)

  17. E.M. Stein, Interpolation of linear operators. Trans. Am. Math. Soc. 83, 482–492 (1956)

    Article  MathSciNet  Google Scholar 

  18. K. Trimèche, Transformation intégrale de Weyl et théorème de Paley–Wiener associés à un opérateur différentiel singulier sur \((0,+\infty )\). J. Math. Pures Appl. 60, 51–98 (1981)

    MathSciNet  MATH  Google Scholar 

  19. K. Trimèche, Inversion of the Lions translation operator using genaralized wavelets. Appl. Comput. Harmon. Anal. 4, 97–112 (1997)

    Article  MathSciNet  Google Scholar 

  20. M.W. Wong, Weyl Transform (Springer, New York, 1998).

    Google Scholar 

  21. M.W. Wong, Wavelet Transforms and Localization Operators (Birkhäuser, Basel, 2002).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aymen Hammami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammami, A. The Schatten–von Neumann class associated with the Gabor–Riemann–Liouville operator. Period Math Hung 83, 192–203 (2021). https://doi.org/10.1007/s10998-021-00379-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-021-00379-w

Keywords

Mathematics Subject Classification

Navigation