Skip to main content
Log in

On the determination of solutions of simultaneous Pell equations \(x^{2}-(a^{2}-1)y^{2}=y^{2}-pz^{2}=1\)

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

In this paper, we consider the simultaneous Pell equations

$$\begin{aligned} x^{2}-(a^{2}-1)y^{2}= & {} 1, \nonumber \\ y^{2}-pz^{2}= & {} 1, \end{aligned}$$
(0.1)

where p is prime and \(a>1.\) Assuming the solutions of the Pell equation \( x^{2}-(a^{2}-1)y^{2}=1\) are \(x=x_{m}\) and \(y=y_{m}\) with \(m\ge 2,\) we prove that the system (0.1) has solutions only when \(m=2\) or \(m=3.\) In the case of \(m=3,\) we show that \(p=2\) and give the solutions of (0.1) in terms of Pell and Pell–Lucas sequences. When \(m=2\) and \(p\equiv 3(\hbox {mod}\, 4),\) we determine the values of axy,  and z. Lastly, we show that (0.1) has no solutions when \(p\equiv 1(\hbox {mod}\,4)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Ai, J. Chen, S. Zhang, H. Hu, Complete solutions of the simultaneous Pell equations \(x^{2}-24y^{2}=1\) and \( y^{2}-pz^{2}=1\). J. Number Theory 147, 103–108 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. M.A. Bennett, On the number of solutions of simultaneous Pell equations. J. Reine Angew. Math. 498, 173–199 (1998)

    MathSciNet  MATH  Google Scholar 

  3. W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I: the user language. J. Symb. Comput. 24(3–4), 235–265 (1997). See also http://magma.maths.usyd.edu.au/magma/

  4. R.D. Carmichael, On the numerical factors of the arithmetic forms \(\alpha ^{n}\pm \beta ^{n}\). Ann. Math. 15(2), 30–70 (1913)

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Cipu, Pairs of Pell equations having at most one common solution in positive integers. An. Şt. Univ. Ovidius Constanţ a Ser. Math. 15(1), 55–66 (2007)

    MathSciNet  MATH  Google Scholar 

  6. M. Cipu, M. Mignotte, On the number of solutions to systems of Pell equations. J. Number Theory 125, 356–392 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. M.T. Damir, B. Faye, F. Luca, A. Tall, Members of Lucas sequences whose Euler function is a power of 2. Fibonacci Q. 52(1), 3–9 (2014)

    MathSciNet  MATH  Google Scholar 

  8. N. Irmak, On solutions of the simultaneous Pell equations \(x^{2}-(a^{2}-1)y^{2}=1\) and \(y^{2}-pz^{2}=1\). Period. Math. Hung. 73, 130–136 (2016)

    Article  MathSciNet  Google Scholar 

  9. W. Ljunggren, Ein Satz über die Diophantische Gleichung \(Ax^{2}-By^{4}=C\) (\(C=1,2,4\)), Tolfte Skand, in: 12. Skand. Mat.-Kongr. Lund 1953, 188–194 (1954)

  10. M. Mignotte, A. Pethő, Sur les carrés dans certaines suites de Lucas. J. Théor. Nombres Bordeaux 5(2), 333–341 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. P.M. Voutier, Primitive divisors of Lucas and Lehmer sequences. Math. Comput. 64(201), 869–888 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Yuan, On the number of solutions of \( x^{2}-4m(m+1)y^{2}=y^{2}-bz^{2}=1\). Proc. Am. Math. Soc. 132(6), 1561–1566 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olcay Karaatlı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keskin, R., Karaatlı, O., Şiar, Z. et al. On the determination of solutions of simultaneous Pell equations \(x^{2}-(a^{2}-1)y^{2}=y^{2}-pz^{2}=1\) . Period Math Hung 75, 336–344 (2017). https://doi.org/10.1007/s10998-017-0203-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-017-0203-2

Keywords

Mathematics Subject Classification

Navigation