Skip to main content
Log in

Peptides: A Supercilious Candidate for Activating Intrinsic Apoptosis by Targeting Mitochondrial Membrane Permeability for Cancer Therapy

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Escape from apoptosis is one of the main demeanor characters of cancer cells. Mitochondria is a key player in the initiation and regulation intrinsic apoptosis. Altering the outer mitochondrial membrane permeability can elicit cytochrome C release, which is a vital step in the intrinsic apoptosis pathway. Targeting the pore-forming protein and its regulators, known as Bcl2 family proteins, is a useful strategy to regulate apoptosis. This article provides a review of synthetic peptides that stimulate apoptosis via the mitochondrial pathways in the hopes of developing future cancer treatments. The role of mitochondria in apoptotic signaling is discussed as well as we outlined the mechanistic role of a few peptides that have been reported for cytotoxic effects, which may be useful to scientists working on therapeutic approaches. It was believed that if the extrinsic pathway failed to induce cell death, the intrinsic pathway. Apoptotic activity of peptides produced from the Bcl2 family, antimicrobial peptides, and other membrane protein-derived peptides has paved the way for the development of new generation anticancer therapeutic agents. However, if this fantastic scenario is to come true, molecular pharmacologists and peptide chemists will have to start working together rather than separately.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alves ID, Carré M, Montero MP et al (2014) A proapoptotic peptide conjugated to penetratin selectively inhibits tumor cell growth. Biochim Biophys Acta - Biomembr 1838:2087–2098. https://doi.org/10.1016/j.bbamem.2014.04.025

    Article  CAS  Google Scholar 

  • Amanakis G, Murphy E (2020) Cyclophilin D: An Integrator of Mitochondrial Function. Front Physiol 11:1–6

    Article  Google Scholar 

  • Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7:99–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergstrom CL, Beales PA, Lv Y et al (2013) Cytochrome c causes pore formation in cardiolipin-containing membranes. Proc Natl Acad Sci USA 110:6269–6274

    Article  PubMed  PubMed Central  Google Scholar 

  • Beutner G, Alanzalon RE, Porter GA (2017) Cyclophilin D regulates the dynamic assembly of mitochondrial ATP synthase into synthasomes. Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-14795-x

    Article  CAS  Google Scholar 

  • Brenner C, Subramaniam K, Pertuiset C et al (2011) Adenine nucleotide translocase family: four isoforms for apoptosis modulation in cancer. Oncogene 30:883–895

    Article  CAS  PubMed  Google Scholar 

  • Brouwer JM, Lan P, Cowan AD et al (2017) Conversion of Bim-BH3 from activator to inhibitor of Bak through structure-based design. Mol Cell 68:659-672.e9. https://doi.org/10.1016/j.molcel.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  • Candé C, Cohen I, Daugas E et al (2002) Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie 84:215–222

    Article  PubMed  Google Scholar 

  • Cao Z, Jia Y, Zhu B (2019) BNP and NT-proBNP as diagnostic biomarkers for cardiac dysfunction in both clinical and forensic medicine. Int J Mol Sci 20:18–20

    Google Scholar 

  • Chen X, Hu C, Zhang Y et al (2020) Anticancer activity and mechanism of action of kla-TAT peptide. Int J Pept Res Ther 26:2285–2296

    Article  CAS  Google Scholar 

  • Chin HS, Li MX, Tan IKL et al (2018) VDAC2 enables BAX to mediate apoptosis and limit tumor development. Nat Commun. https://doi.org/10.1038/s41467-018-07309-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Dadsena S, Bockelmann S, Mina JGM et al (2019) Ceramides bind VDAC2 to trigger mitochondrial apoptosis. Nat Commun. https://doi.org/10.1038/s41467-019-09654-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz-Quintana A, Pérez-Mejías G, Guerra-Castellano A, et al (2020) Wheel and deal in the mitochondrial inner membranes: the tale of cytochrome c and cardiolipin. Oxid Med Cell Longev

  • Dubey AK, Godbole A, Mathew MK (2016) Regulation of VDAC trafficking modulates cell death. Cell Death Discov 2

  • n, Eunsung Mouradian MM (2008) 基因的改变NIH Public Access 23:1–7

  • Flores-Romero H, García-Sáez AJ (2019) The incomplete puzzle of the BCL2 proteins. Cells 8

  • Gogvadze V, Robertson JD, Enoksson M et al (2004) Mitochondrial cytochrome c release may ocour by volume-dependent mechanisms not involving permeability transition. Biochem J 378:213–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green DR, Llambi F (2015) Smac mimetics as novel promising modulators of apoptosis in the treatment of breast cancer. Cold Spring Harb Perspect Biol 7

  • Han Q, Zhang C, Zhang Y et al (2021) Bufarenogin induces intrinsic apoptosis via Bax and ANT cooperation. Pharmacol Res Perspect 9:1–11

    Article  Google Scholar 

  • Hao W, Hu C, Huang Y et al (2019) Coadministration of kla peptide with HPRP-A1 to enhance anticancer activity. PLoS One 14:1–15

    CAS  Google Scholar 

  • Hernández-luna MA, León-ortega De RD, Hernández-cueto DD et al (2016) Bactofection of sequences encoding a Bax protein peptide chemosensitizes prostate cancer tumor cells. Bol Med Hosp Infant Mex 73:388–396. https://doi.org/10.1016/j.bmhimx.2016.10.002

    Article  PubMed  Google Scholar 

  • Hird AW, Tron AE (2019) Recent advances in the development of Mcl-1 inhibitors for cancer therapy. Pharmacol Ther 198:59–67. https://doi.org/10.1016/j.pharmthera.2019.02.007

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Li X, Sha H et al (2017) Tumor-penetrating peptide fused to a pro-Apoptotic peptide facilitates effective gastric cancer therapy. Oncol Rep 37:2063–2070

    Article  CAS  PubMed  Google Scholar 

  • Huang K, O’Neill KL, Li J et al (2019) BH3-only proteins target BCL-xL/MCL-1, not BAX/BAK, to initiate apoptosis. Cell Res 29:942–952. https://doi.org/10.1038/s41422-019-0231-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalpage HA, Wan J, Morse PT, et al (2020) Cytochrome c phosphorylation: control of mitochondrial electron transport chain flux and apoptosis. Int J Biochem Cell Biol 121

  • Kammath AJ, Nair B, Sreelekshmi P, et al (2021) Curry versus cancer: Potential of some selected culinary spices against cancer with in vitro, in vivo, and human trials evidences. J Food Biochem 45 https://pubmed.ncbi.nlm.nih.gov/32524639/

  • Karch J, Bround MJ, Khalil H, et al (2018) Inhibition of mitochondrial permeability transition by deletion of the ANT family and CypD. bioRxiv 1–8

  • Kehr S, Haydn T, Bierbrauer A et al (2020) Targeting BCL-2 proteins in pediatric cancer: dual inhibition of BCL-XL and MCL-1 leads to rapid induction of intrinsic apoptosis. Cancer Lett 482:19–32. https://doi.org/10.1016/j.canlet.2020.02.041

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Tu HC, Ren D et al (2009) Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell 36:487–499. https://doi.org/10.1016/j.molcel.2009.09.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koushi M, Aoyama Y, Kamei Y et al (2020) Bisindolylpyrrole triggers transient mitochondrial permeability transitions to cause apoptosis in a VDAC1/2 and cyclophilin D-dependent manner via the ANT-associated pore. Sci Rep 10:1–13. https://doi.org/10.1038/s41598-020-73667-z

    Article  CAS  Google Scholar 

  • Krebs J (1998) The role of calcium in apoptosis. Biometals 11:375–382

    Article  CAS  PubMed  Google Scholar 

  • Kuo HM, Tseng CC, Chen NF, et al (2018) MSP-4, an antimicrobial peptide, induces apoptosis via activation of extrinsic Fas/FasL- and intrinsic mitochondria-mediated pathways in one osteosarcoma cell line. Mar Drugs 16

  • Kurrikoff K, Aphkhazava D, Langel Ü (2019) The future of peptides in cancer treatment. Curr Opin Pharmacol 47:27–32

    Article  CAS  PubMed  Google Scholar 

  • Kuwana T, Bouchier-Hayes L, Chipuk JE et al (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17:525–535

    Article  CAS  PubMed  Google Scholar 

  • Lauterwasser J, Todt F, Zerbes RM et al (2016) The porin VDAC2 is the mitochondrial platform for Bax retrotranslocation. Sci Rep 6:1–11

    Article  Google Scholar 

  • Lavik AR, Zhong F, Chang MJ et al (2015) BIRD-2. Oncotarget 6:27388–27402

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Zhu H, Xu CJ et al (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Article  CAS  PubMed  Google Scholar 

  • Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Wang ZK, Wang ZY et al (2016) Mitochondrial permeability transition and its regulatory components are implicated in apoptosis of primary cultures of rat proximal tubular cells exposed to lead. Arch Toxicol 90:1193–1209

    Article  CAS  PubMed  Google Scholar 

  • Lopez J, Tait SWG (2015) Mitochondrial apoptosis: Killing cancer using the enemy within. Br J Cancer 112:957–962. https://doi.org/10.1038/bjc.2015.85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Yang J, Zheng Y et al (2019) Resveratrol reduces store-operated Ca(2+) entry and enhances the apoptosis of fibroblast-like synoviocytes in adjuvant arthritis rats model via targeting ORAI1-STIM1 complex. Biol Res 52:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo X, O’Neill KL, Huang K (2020) The third model of Bax/Bak activation: a Bcl-2 family feud finally resolved? F1000Research 9: 1–15

  • Magrì A, Ramona B, Reina S, et al (2016) Hexokinase I N-terminal based peptide prevents the VDAC1-SOD1 G93A interaction and re-establishes ALS cell viability. Nat Publ Gr 1–14

  • Marini C, Salani B, Massollo M et al (2013) Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer. Cell Cycle 12:3490–3499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateos-Chávez AA, Muñoz-López P, Becerra-Báez EI et al (2019) Live attenuated salmonella enterica expressing and releasing cell-permeable Bax BH3 peptide through the misl autotransporter system elicits antitumor activity in a murine xenograft model of human B non-hodgkin’s lymphoma. Front Immunol 10:1–22

    Article  Google Scholar 

  • McArthur K, Whitehead LW, Heddleston JM, et al (2018) BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359

  • Messina A, Reina S, Guarino F et al (2012) VDAC isoforms in mammals. Biochim Biophys Acta - Biomembr 1818:1466–1476. https://doi.org/10.1016/j.bbamem.2011.10.005

    Article  CAS  Google Scholar 

  • Moreno P, Ramos-Álvarez I, Moody TW et al (2016) Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging, targeting and treatment. Expert Opin Ther Targets 20:1055–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikkhoo A, Rostami N, Hojjat-Farsangi M et al (2019) Smac mimetics as novel promising modulators of apoptosis in the treatment of breast cancer. J Cell Biochem 120:9300–9314

    Article  CAS  PubMed  Google Scholar 

  • Peptide S, Death MC (2020) Molecules associated with cytoplasmic membrane disruption, mitochondrial dysfunction and cell cycle arrest in 2020

  • Pinto IFD, de Chaves-Filho A, Cunha da, D et al (2020) Cytochrome c modification and oligomerization induced by cardiolipin hydroperoxides in a membrane mimetic model. Arch Biochem Biophys 693:108568. https://doi.org/10.1016/j.abb.2020.108568

    Article  CAS  PubMed  Google Scholar 

  • Rai Y, Yadav P, Kumari N et al (2019) Hexokinase II inhibition by 3-bromopyruvate sensitizes myeloid leukemic cells K-562 to anti-leukemic drug, daunorubicin. Biosci Rep 39:1–18

    Article  Google Scholar 

  • Rogers C, Erkes DA, Nardone A et al (2019) Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat Commun 10:1–17. https://doi.org/10.1038/s41467-019-09397-2

    Article  CAS  Google Scholar 

  • Ruan J (2019) Structural insight of gasdermin family driving pyroptotic cell death. Adv Exp Med Biol 1172:189–205

    Article  CAS  PubMed  Google Scholar 

  • Sasidharan A, Chandran P, Menon D et al (2011) Rapid dissolution of ZnO nanocrystals in acidic cancer microenvironment leading to preferential apoptosis. Nanoscale 3:3657–3669

    Article  CAS  PubMed  Google Scholar 

  • Shteinfer-kuzmine A, Amsalem Z, Arif T, et al (2018) Selective induction of cancer cell death by VDAC1-based peptides and their potential use in cancer therapy. 12:1077–1103

  • Su B, Liu Y, Ting C, et al (2020) Antimicrobial peptide TP4 targets mitochondrial. 1–13

  • Tait SWG, Green DR (2010) Mitochondria and cell death: Outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632. https://doi.org/10.1038/nrm2952

    Article  CAS  PubMed  Google Scholar 

  • Tewari D, Majumdar D, Vallabhaneni S et al (2017) Aspirin induces cell death by directly modulating mitochondrial voltage-dependent anion channel (VDAC). Sci Rep 7:1–9

    Article  Google Scholar 

  • Ting CH, Chen YC, Wu CJ et al (2016) Targeting FOSB with a cationic antimicrobial peptide, TP4, for treatment of triple-negative breast cancer. Oncotarget 7:40329–40347

    Article  PubMed  PubMed Central  Google Scholar 

  • Ting CH, Liu YC, Lyu PC et al (2018) Nile tilapia derived antimicrobial peptide TP4 exerts antineoplastic activity through microtubule disruption. Mar Drugs 16:1–16

    Article  Google Scholar 

  • Tse C, Shoemaker AR, Adickes J et al (2008) ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68:3421–3428

    Article  CAS  PubMed  Google Scholar 

  • Tsujimoto Y, Shimizu S (2007) Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 12:835–840

    Article  CAS  PubMed  Google Scholar 

  • Ugarte-alvarez O, Muñoz-l P, Moreno-vargas LM, et al (2020) Cell-permeable Bak BH3 peptide induces chemosensitization of 2020

  • Uren RT, Iyer S, Kluck RM (2017) Pore formation by dimeric Bak and Bax: an unusual pore? Philos Trans R Soc B Biol Sci 372

  • Wang Z, Yin F, Xu J et al (2019) CYT997(Lexibulin) induces apoptosis and autophagy through the activation of mutually reinforced ER stress and ROS in osteosarcoma. J Exp Clin Cancer Res 38:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei MC, Lindsten T, Mootha VK et al (2000) tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14:2060–2071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei L, Zhou Y, Dai Q et al (2013) Oroxylin A induces dissociation of hexokinase II from the mitochondria and inhibits glycolysis by SIRT3-mediated deacetylation of cyclophilin D in breast carcinoma. Cell Death Dis 4:1–12

    Google Scholar 

  • Whang J, Back YW, Lee KI et al (2017) Mycobacterium abscessus glycopeptidolipids inhibit macrophage apoptosis and bacterial spreading by targeting mitochondrial cyclophilin D. Cell Death Dis 8:e3012. https://doi.org/10.1038/cddis.2017.420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willis SN (2008) Apoptosis initiated when BH3 ligands 856

  • Wu K, Luan G, Xu Y et al (2020) Cigarette smoke extract increases mitochondrial membrane permeability through activation of adenine nucleotide translocator (ANT) in lung epithelial cells. Biochem Biophys Res Commun 525:733–739. https://doi.org/10.1016/j.bbrc.2020.02.160

    Article  CAS  PubMed  Google Scholar 

  • Xin M, Li R, Xie M, et al (2014) Small-molecule Bax agonists for cancer therapy. Nat Commun 5

  • Zhang M, Zheng J, Nussinov R et al (2017) Release of cytochrome C from Bax pores at the mitochondrial membrane /631/114/2397 /639/638/440/56 /119/118 article. Sci Rep 7:1–13

    Article  Google Scholar 

  • Zhang X, Brossas JY, Parizot C et al (2018) Identification and characterization of novel enhanced cell penetrating peptides for anti-cancer cargo delivery. Oncotarget 9:5944–5957

    Article  PubMed  Google Scholar 

  • Zhou H, Forveille S, Sauvat A et al (2015) The oncolytic peptide LTX-315 kills cancer cells through Bax/Bak-regulated mitochondrial membrane permeabilization. Oncotarget 6:26599–26614

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Principal and HOD, Amrita School of Pharmacy, for their support and assistance.

Funding

The authors received no specific funding for this work. This work did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. K. Kanthlal or Rajitha Panonummal.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflict of interest associated with this publication.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Since the work does not contain any studies with human participants, no consents are required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, M., Kanthlal, S.K. & Panonummal, R. Peptides: A Supercilious Candidate for Activating Intrinsic Apoptosis by Targeting Mitochondrial Membrane Permeability for Cancer Therapy. Int J Pept Res Ther 27, 2883–2893 (2021). https://doi.org/10.1007/s10989-021-10297-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-021-10297-7

Keywords

Navigation